-
公开(公告)号:CN112149413A
公开(公告)日:2020-12-29
申请号:CN202010932371.9
申请日:2020-09-07
Applicant: 国家计算机网络与信息安全管理中心 , 深圳市任子行科技开发有限公司
IPC: G06F40/284 , G06F40/289 , G06F40/30 , G06F40/216 , G06N3/04 , G06N3/08
Abstract: 本发明提供一种基于神经网络识别互联网网站所属业态的方法、装置以及计算机可读存储介质。该方法包括:获取互联网网站业态的文本数据集,从所述文本数据集中提取文本特征词;基于所述文本特征词对所述文本特征词进行词向量化以获取词向量序列;将所述词向量序列分别输入递归神经网络及卷积神经网络模型,分别得到所述递归神经网络及卷积神经网络模型输出的目标特征向量,并将所述目标特征向量进行并联拼接;将已拼接的所述目标特征向量输入全连接神经网络,最后输出概率预测向量;查找所述概率预测向量中的最大值,并以所述最大值对应的业态作为所述互联网网站的所属业态。通过本发明,实现了高精度识别互联网网站的所属业态。
-
公开(公告)号:CN106294333B
公开(公告)日:2019-10-29
申请号:CN201510236634.1
申请日:2015-05-11
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/332 , G06F16/953
Abstract: 本发明提供一种微博突发话题检测方法及装置,用以解决目前微博突发话题难以识别的问题,该方法包括,提取指定的微博数据集合中的特征项,特征项为包含具体语义的语言单元;确定特征项在微博数据集合的文本中的流通度以及特征项当前的热度;以流通度为质量参数项,以热度为位置参数项对特征项进行动力学建模,得到特征项的当前能量和加速度;在得到的能量以及加速度分别大于第一预设值以及第二预设值时,检测突发特征项;根据检测到的突发特征项在同一条微博中同时出现的情况计算突发特征项之间的互信息;当互信息大于第三阈值时,对突发特征项进行合并,得到突发话题,该方案能够提高微博突发话题检测的准确率。
-
公开(公告)号:CN105068988B
公开(公告)日:2018-01-30
申请号:CN201510431992.8
申请日:2015-07-21
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F17/27
Abstract: 本发明涉及一种多维度和多粒度情感分析方法,包括:构建情感资源,即根据特定领域文本的类别体系构建其情感资源;选择情感倾向词,即选择每个类别下的情感词并确定其情感倾向;判别情感倾向性,包括:判断信息资源的类型;从信息资源中获取情感关键词;从信息资源中识别权威发布者,并获取该信息资源的情感分析结果;对社交类信息进行情感分析;对非专有类别社交类信息的情感倾向进行分析;针对专有类别的社交信息进行情感分析。本发明的情感分析方法能够从多维度、多粒度进行情感分析以提供较高的情感分析识别率和精度。
-
公开(公告)号:CN105068988A
公开(公告)日:2015-11-18
申请号:CN201510431992.8
申请日:2015-07-21
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F17/27
Abstract: 本发明涉及一种多维度和多粒度情感分析方法,包括:构建情感资源,即根据特定领域文本的类别体系构建其情感资源;选择情感倾向词,即选择每个类别下的情感词并确定其情感倾向;判别情感倾向性,包括:判断信息资源的类型;从信息资源中获取情感关键词;从信息资源中识别权威发布者,并获取该信息资源的情感分析结果;对社交类信息进行情感分析;对非专有类别社交类信息的情感倾向进行分析;针对专有类别的社交信息进行情感分析。本发明的情感分析方法能够从多维度、多粒度进行情感分析以提供较高的情感分析识别率和精度。
-
公开(公告)号:CN118965451A
公开(公告)日:2024-11-15
申请号:CN202410973742.6
申请日:2024-07-19
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F21/64 , G06F16/27 , G06F21/62 , G06F16/182
Abstract: 本发明公开一种基于区块链的分布式存储数据轻量化管理方法及系统,属于区块链技术领域。所述方法包括:通过调用权限管理智能合约生成交易,来实现账户的权限管理和分布式存储文件的数据管理,所述权限管理智能合约的输入参数包括:操作类型、账户id、权限id和数据id。本发明可以实现对分布式存储数据的多样化管理权限,包括数据创建、删除、检索、共享、转移等。
-
公开(公告)号:CN118796264A
公开(公告)日:2024-10-18
申请号:CN202410768709.X
申请日:2024-06-14
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明涉及模板网站发现技术领域,公开了一种模板网站关键源码片段识别方法,包括基于PC端/移动端两种UserAgent获取网站的页面源代码,并且获取到图片、文件等外链资源;获取到完整的网页源码信息后,通过构建源码文件和源码片段的提取规则,获取到HTML、JS、CSS、IMG片段或文件;基于人工分析并形成评价源码相关性和通用性的指标体系,通过人工标注一批正样本和负样本;基于机器学习模型进行训练,形成网站关键源码片段研判模型;通过模型对实时源码片段数据进行分析,并输出研判结果。本发明通过构建网站相关性和通用性维度指标体系,基于机器学习模型提取网站的关键源码片段。基于该识别结果能够在不掌握大量样本的情况下,支撑对大量网站和源码进行快速匹配识别模板网站,大大提高了识别效率降低算力消耗。
-
公开(公告)号:CN113743111B
公开(公告)日:2024-06-04
申请号:CN202010865079.X
申请日:2020-08-25
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F40/289 , G06F40/30 , G06F18/2415 , G06F18/2431 , G06N3/045 , G06N3/084 , G06Q40/03
Abstract: 本申请涉及一种基于文本预训练和多任务学习的金融风险预测方法及装置。该方法包括:获取待处理文本;将待处理文本输入第一神经网络模型,以按照风险识别任务的处理流程确定待处理文本的内容是否包括金融风险;在待处理文本的内容包括金融风险的情况下,利用第一神经网络模型按照风险分类任务的处理流程确定金融风险的风险类型;利用第一神经网络模型按照风险主体识别任务的处理流程确定与风险类型匹配的风险主体。本申请通过预训练语言模型技术解决了缺乏对语义的深度挖掘导致模型性能不佳的问题,并采用多任务处理,解决了数据量有限而且任务之间无法进行信息共享导致模型性能不佳的技术问题。
-
公开(公告)号:CN113822069B
公开(公告)日:2024-03-12
申请号:CN202111095062.1
申请日:2021-09-17
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F40/289 , G06F40/30 , G06F40/49 , G06F18/23 , G06F18/214
Abstract: 本申请涉及一种基于元知识的突发事件预警方法、装置和电子装置,其中,该方法包括:获取目标文本数据中的目标关键词,以及第一事件在第一时间段内的时序热度,其中,目标文本数据为描述第一事件的文本数据,目标关键词为目标文本数据中用于描述第一事件的特征信息的关键词;根据目标关键词确定第一事件的元知识,其中,元知识用于指示第一事件的目标事件特征;根据元知识以及第一时间段内的时序热度确定第一事件在第二时间段内的目标热度,其中,第一时间段的终止时间早于第二时间段的起始时间;根据元知识和目标热度确定在第二时间段第二事件的发生概率。本申请解决了事件预警的效率较低的技术问题。
-
公开(公告)号:CN111861119B
公开(公告)日:2023-07-11
申请号:CN202010555450.2
申请日:2020-06-17
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院计算技术研究所
IPC: G06Q10/0635 , G06F16/901
Abstract: 本申请涉及一种基于企业风险关联图谱的企业风险数据处理方法及装置。该方法包括:获取企业风险关联图谱并确定第一目标节点,企业风险关联图谱用于保存企业之间的风险传播关系,第一目标节点为企业风险关联图谱中的节点,用于表示出现风险问题的风险企业;利用企业风险关联图谱确定与第一目标节点关联的第二目标节点的风险参数,第二目标节点为企业风险关联图谱中的节点,用于表示与风险企业存在关联关系的企业,风险参数用于表示与风险企业存在关联关系的企业受风险企业影响的概率。本申请实现了从企业关联关系的角度分析其他企业受风险企业影响的概率,提供了评估企业之间风险传播的更为准确、形象的方法。
-
公开(公告)号:CN114817485A
公开(公告)日:2022-07-29
申请号:CN202110078586.3
申请日:2021-01-20
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/332 , G06F16/35 , G06K9/62
Abstract: 本发明实施例涉及一种非法集资线索识别方法、装置、电子设备及存储介质,所述方法包括:获取多个待进行非法集资线索识别的目标文本数据;基于预设的线索特征规则库从多个所述目标文本数据中确定疑似非法集资线索数据;将所述疑似非法集资线索数据输入至至少一个已训练的非法集资线索分类模型,得到至少一个预测参数;依据所述疑似非法集资线索数据与所述疑似非法集资线索数据对应的至少一个所述预测参数构建非法集资线索数据库。由此,可以提高从海量互联网数据中筛选非法集资线索数据的效率,以及提高最终筛选出的非法集资线索数据的准确性、全面性。
-
-
-
-
-
-
-
-
-