-
公开(公告)号:CN117058492B
公开(公告)日:2024-02-27
申请号:CN202311322535.6
申请日:2023-10-13
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06V10/774 , G06V10/764 , G06V10/82 , G06V20/70 , G06N3/09 , G06N5/04
Abstract: 一种基于学习解耦的两阶段训练病害识别方法和系统,其方法包括:步骤S1:采集待识别作物的图像样本,制作训练数据集;步骤S2:构造基于学习解耦的分类算法网络模型;步骤S3:对基于学习解耦的分类算法模型进行一阶段训练;步骤S4:固定部分权重,对基于学习解耦的分类算法模型进行二阶段训练;步骤S5:基于训练得到的基于学习解耦的分类算法模型进行推理,最终得到待分类目标叶片的病害种类和病害等级。本发明具有准确度高,标注成本极低,且可实现单模型对病害种类和病害等级进行细分类识别。
-
公开(公告)号:CN117557847A
公开(公告)日:2024-02-13
申请号:CN202311520256.0
申请日:2023-11-15
Applicant: 之江实验室
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/09
Abstract: 本发明公开了一种基于对比知识蒸馏的图像识别方法和装置,包括获取带有类别标签的训练图像样本;利用训练图像样本对第一神经网络分类模型进行基于类别标签的监督学习训练,将训练图像样本输入至训练后的第一神经网络分类模型得到第一嵌入特征表达和对应的第一分类软标签;将训练图像样本输入至第二神经网络分类模型得到第二嵌入特征表达及对应的第二分类软标签,基于第一嵌入特征表达和第二嵌入特征表达计算对比蒸馏损失,基于第一分类软标签和第二分类软标签计算KL散度损失,对比蒸馏损失和KL散度损失联合图像识别任务损失更新第二神经网络分类模型的参数,更新后的第二神经网络分类模型作为图像识别模型用于图像识别。
-
公开(公告)号:CN117011718B
公开(公告)日:2024-02-02
申请号:CN202311288015.8
申请日:2023-10-08
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06V20/10 , G06V10/764 , G06V10/42 , G06V10/44 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/0895 , G06N3/094
Abstract: 据中。一种基于多元损失融合的植物叶片细粒度识别方法和系统,首先将植物叶片图像以九宫格的方式进行随机掩码完成图像增强,并与原图成对地输入到特征提取网络模型中,得到特征向量;将特征向量输入分类网络层中,并进行品种识别;将特征向量输入到对抗网络层中,进行二分类识别;将掩码图的特征向量输入到自编码网络模块中,进行图像复原的自监督学习;三项任务的损失函数共同监督并指导网络的训练;在自监督任务中掩码图像通过学习复原本身位置使特征提取网络关注到叶片局部特征,而原图在品(56)对比文件王泽宇 等.基于多模态特征的无监督领域自适应多级对抗语义分割网络《.通信学报》.2022,第43卷(第12期),157-171.齐爱玲 等.基于中层细微特征提取与多尺度特征融合细粒度图像识别《.计算机应用》.2023,第43卷(第8期),2556-2563.Gang Li 等.Self-supervised VisualRepresentation Learning for Fine-GrainedShip Detection《.2021 IEEE 4thInternational Conference on InformationSystems and Computer Aided Education(ICISCAE)》.2021,67-71.
-
公开(公告)号:CN112069929B
公开(公告)日:2024-01-05
申请号:CN202010842782.9
申请日:2020-08-20
Applicant: 之江实验室
Abstract: 本发明公开了一种无监督行人重识别方法、装置、电子设备及存储介质,该方法包括:在带标签的源域数据集中预训练行人重识别模型;利用所述模型提取无标签目标域中训练集的训练特征;根据所述训练特征,基于自适应聚类的方法将目标域训练集分为若干簇,并分配对应的伪标签;将每个簇设定为一个原型,在原型中挑选出与原型中心的距离小于设定阈值的样本,并利用所述样本的训练特征和伪标签对所述模型进行再训练,得到更新参数后的行人重识别模型;将目标域的查询集和待选集输入到所述模型中,分别得到二者的测试特征,根据测试特征的相似度从待选集中选出符合查询图片要求的图片。本发明有效缓解了域间隔问题,提高了跨域行人重识别的准确度。
-
公开(公告)号:CN116817754B
公开(公告)日:2024-01-02
申请号:CN202311082530.0
申请日:2023-08-28
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G01B11/00 , G01B11/02 , G01N21/84 , G06V20/60 , G06V10/10 , G06V10/44 , G06V10/50 , G06V10/75 , G06V10/82
Abstract: 一种基于稀疏重建的大豆植株表型提取方法及系统,其方法包括:对大豆植株进行多视角成像,通过密度图估计在各视图中提取植株二维关键点,包括端点关键点、节点关键点和豆粒关键点,同时通过亲和力场估计给出同一豆荚中豆粒关联关系,基于对称极线距离和二分匹配,关联各视图中的同一关键点和同一豆荚,进而通过三角测量计算各关键点的三维坐标,用于测量株高、统计豆粒的空间分布、计算节数、单株粒数和荚数等。本发明可精准且高效的提取大豆植株表型,具有较高的可行性和实用性。(56)对比文件Haoran Zhao等.Exploring BetterSpeculation and Data Locality in SparseMatrix-Vector Multiplication on IntelXeon.2020 IEEE 38th InternationalConference on Computer Design.2020,全文.Yourui Huang等.Low IlluminationSoybean Plant Reconstruction and TraitPerception.Agriculture.2022,第12卷(第12期),第2.1-2.3节.李晨雨.基于三维重建的大豆植株叶面积自动测量方法的研究.中国优秀硕士学位论文全文数据库 农业科技辑.2023,(第1期),全文.
-
公开(公告)号:CN115761137B
公开(公告)日:2023-12-22
申请号:CN202211484005.7
申请日:2022-11-24
Applicant: 之江实验室 , 中国铁建重工集团股份有限公司
Abstract: 面重建。本发明公开了一种基于法向量和点云数据相互融合的高精度曲面重建方法和装置,包括:获取高精度稀疏点云数据,重建高精度稀疏点云数据得到粗糙曲面的低频法向量特征;获取光照方向及其对应的图像,根据光照方向及其对应的图像并以粗糙曲面的低频法向量特征为指导,采用光度立体视觉方式获得高精度稠密法向量特征;对高精度高密度法向量特征积分得到高精度稠密点云数据后,对高精度稠密点云数据和高精(56)对比文件Xiaohan Pei等.Topology Reconstructionof High-Reflective Surfaces Based onMulti-modality Data《.Intelligent Roboticsand Applications》.2022,全文.
-
公开(公告)号:CN117174161A
公开(公告)日:2023-12-05
申请号:CN202311078766.7
申请日:2023-08-25
Abstract: 本发明公开了一种基于频域变换增强的表型预测方法,包括:获取不同作物植株的基因数据和表型数据并对其进行预处理;对预处理后的基因数据进行数值映射;对数值映射后的基因序列进行离散傅里叶变换,判断每个窗口是否为蛋白质编码区,并根据判断结果对蛋白质编码区进行特征增强;将特征增强后的基因序列进行处理,采用低频特征、高频去噪后的特征、小波逆变换后的低频特征以及作为标签的预处理后的表型数据对三流网络进行优化训练;将待检测基因序列的特征输入到训练好的三流网络中,输出表型预测结果。本发明还公开了一种基于频域变换增强的表型预测装置。本发明利用基因编码区的先验提高表型预测效果,实现时频上的基因到表型的非线性关系。
-
公开(公告)号:CN116817754A
公开(公告)日:2023-09-29
申请号:CN202311082530.0
申请日:2023-08-28
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G01B11/00 , G01B11/02 , G01N21/84 , G06V20/60 , G06V10/10 , G06V10/44 , G06V10/50 , G06V10/75 , G06V10/82
Abstract: 一种基于稀疏重建的大豆植株表型提取方法及系统,其方法包括:对大豆植株进行多视角成像,通过密度图估计在各视图中提取植株二维关键点,包括端点关键点、节点关键点和豆粒关键点,同时通过亲和力场估计给出同一豆荚中豆粒关联关系,基于对称极线距离和二分匹配,关联各视图中的同一关键点和同一豆荚,进而通过三角测量计算各关键点的三维坐标,用于测量株高、统计豆粒的空间分布、计算节数、单株粒数和荚数等。本发明可精准且高效的提取大豆植株表型,具有较高的可行性和实用性。
-
公开(公告)号:CN116703820A
公开(公告)日:2023-09-05
申请号:CN202310406884.X
申请日:2023-04-17
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06T7/00 , G06T7/70 , G06N3/0464 , G06N3/084 , G06V10/82 , G06V10/774
Abstract: 一种基于热力图的高密度豆粒计数及中心点定位方法,用高斯函数生成高斯核模板,结合已标记的豆粒中心点位置,生成用于豆粒计数的真值热力图;采用基于空洞卷积的CSRNet作为密度图估计模块,将原始图像与真值热力图输入到模型中计算得到与原始图像同大小的热力图,通过对比预测热力图与真值热力图的L2损失进行参数的学习,实现高质量的热力图估计。对于待测试图像,使用CSRNet预测热力图,再通过判断局部最大位置点,从热力图中获取得到所有中心点的位置坐标,并通过局部中心点热力图的值取整获得豆粒数。还包括一种基于热力图的高密度豆粒计数及中心点定位系统。本发明可提高豆粒计数模型在高密度、遮挡严重场景下的计数准确性。
-
公开(公告)号:CN116597245A
公开(公告)日:2023-08-15
申请号:CN202310401225.7
申请日:2023-04-13
IPC: G06V10/774 , G06V10/82 , G06V10/74 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种图像识别模型训练方法与系统、图像处理方法与系统,在预训练第一神经网络模型基础上,通过训练图像样本在第一神经网络模型和第二神经网络模型中间层的第一中间层特征表达与第二中间层特征进行通道匹配,并基于匹配通道之间的知识蒸馏得到第一损失函数,同时还结合基于预测类别标签信息和软标签构建的第二损失函数以及基于预测类别标签信息和真实标签构建的第三损失函数对第二神经网络模型进行联合训练,这样可以实现两模型通道之间的自动匹配,增强第二神经网络模型获取的知识表达的判别性,进而提升图像识别精度。基于该图像识别模型进行的图像识别也大大提升了图像识别准确性。
-
-
-
-
-
-
-
-
-