基于量子鸡群演化机制的环形天线阵列稀疏方法

    公开(公告)号:CN107657098A

    公开(公告)日:2018-02-02

    申请号:CN201710834252.8

    申请日:2017-09-15

    Abstract: 本发明提供的是一种基于量子鸡群演化机制的环形天线阵列稀疏方法。1、建立环形天线阵列稀疏模型;2、设置初始参数;3、设计适应度函数;4、计算种群中每只鸡的适应度值,区分鸡的种类并划分子种群;5、6及7分别构建公鸡、母鸡和小鸡的量子矢量旋转角更新公式,更新量子矢量旋转角,更新的量子位置;8、过测量的方式转化为其{0,1}编码位置,计算该{0,1}编码位置的适应度值,并更新每只鸡的个体历史最优解和全局最优解;9:判断是否达到最大迭代次数。该方法具有更快的收敛速度和更高的收敛精度,并在解决环形天线阵列稀疏构建的问题中具有很好的稀疏效果,很大程度的降低了天线阵列系统的复杂度和成本,达到了预期的要求。

    一种基于极化敏感阵列的相干信源测向方法

    公开(公告)号:CN107656239A

    公开(公告)日:2018-02-02

    申请号:CN201710722329.2

    申请日:2017-08-22

    CPC classification number: G01S3/782

    Abstract: 本发明提出了一种极化敏感阵列下的相干信源测向方法,属于极化敏感阵列信号处理领域。本发明公开的方法的步骤为:(1)建立极化敏感阵列测向模型;(2)初始化种群中的量子花粉,确定全局最优量子花粉;(3)每个量子花粉依概率生成一个新的量子花粉;(4)把每个量子花粉映射为花粉,计算每个量子花粉的适应度并选择量子花粉;(5)使用量子差分演进机制产生新的量子花粉,并进行选择;(6)判断是否达到最大迭代次数:若达到最大迭代次数,执行步骤(7);否则,令t=t+1,返回步骤(3)继续迭代;(7)输出全局最优量子花粉的极大似然估计值。通过本发明提供的方法在信噪比低、快拍数小以及相干信源的情况下,都可以进行有效测向。

    基于量子杂草寻优机制的小波数字水印嵌入和提取方法

    公开(公告)号:CN107578365A

    公开(公告)日:2018-01-12

    申请号:CN201710810395.5

    申请日:2017-09-11

    Abstract: 本发明提供了一种基于量子杂草寻优机制的小波数字水印嵌入和提取方法,属于信息隐藏技术领域。具体实现过程为:对水印图像进行二值化,并对二值化后的水印图像进行加密处理。把载体图像和加密后的水印图像变换到小波域中,在载体图像分成多个嵌入点,根据量子杂草寻优机制优化的不同参数,采用加性或者乘性规则嵌入水印,然后通过小波重构变换到时域完成水印的嵌入;水印的提取方法与嵌入方法对应,把含水印图像变换到小波域,在不同的嵌入点根据不同参数提取出置乱加密后的水印,整合成完整的水印,然后变换到时域中,通过置乱恢复得到提取出来的水印。和现有方法比较,该方法的不可感知性、鲁棒性及安全性都得到了提高,更具有实用性。

    多目标量子蝙蝠演进机制的小波数字水印生成方法

    公开(公告)号:CN107256529A

    公开(公告)日:2017-10-17

    申请号:CN201710342909.9

    申请日:2017-05-16

    Abstract: 本发明提供的是一种多目标量子蝙蝠演进机制的小波数字水印生成方法。建立设计模型,确定对应于多目标量子蝙蝠演进机制的关键参数。构造多目标小波数字水印系统最大值求解问题的多目标函数,量子蝙蝠根据目标函数值进行非支配量子位置排序和拥挤度计算,将非支配量子位置排序等级为1且拥挤度大的量子位置放入精英量子位置集。使用多目标量子蝙蝠演进机制更新量子蝙蝠的速度和量子位置,选择非支配量子位置,更新精英量子位置集。从最终的Pareto前端量子位置集中选择量子位置并映射为位置作为多目标小波数字水印的一种设计方案。本发明的实时性好且应用范围广泛,能够解决需要综合考虑不同指标要求的多目标小波数字水印设计这一技术难题。

    一种基于量子鸟群演化机制的阵列幅相误差校正方法

    公开(公告)号:CN109376329B

    公开(公告)日:2022-09-27

    申请号:CN201811033518.X

    申请日:2018-09-05

    Abstract: 本发明属于阵列信号处理领域,具体涉及一种基于量子鸟群演化机制的阵列幅相误差的校正方法。包括进行相位误差校正,进行幅度误差校正;利用已知独立信源建立接收数据模型后每次校正的步骤为:初始化量子鸟群;计算每只量子鸟量子位置的适应度,得到每只量子鸟的局部最优量子位置和量子鸟群全局最优量子位置;通过更新每只量子鸟的量子旋转角更新量子位置;计算每只量子鸟量子位置更新后的适应度,更新每只量子鸟局部最优量子位置和量子鸟群全局最优量子位置;判断是否达到最大迭代次数;输出全局最优量子位置并映射为相位或幅相误差矩阵。本发明只需一个已知的辅助信源,算法模型简单,运算量较少,具有收敛速度快,收敛精度高的优点。

    一种基于量子蜻蜓演化机制的宽带测向方法

    公开(公告)号:CN109212466B

    公开(公告)日:2022-09-02

    申请号:CN201811017243.0

    申请日:2018-09-01

    Abstract: 本发明提供一种基于量子蜻蜓演化机制的宽带测向方法,通过建立宽带信号采样模型,初始化量子蜻蜓演化参数,计算每只量子蜻蜓的适应度,对量子蜻蜓群体前一半更新领域半径以及邻域量子蜻蜓的相关参数,对后一半更新每只量子蜻蜓的相关参数,计算所有量子蜻蜓位置的适应度值,判断是否达到最大迭代次数,若已经达到,则量子蜻蜓群体全局最优量子位置映射成最优位置,得到宽带波达方向估计所要估计的角度。本发明对宽带信号进行测向,减少了运算量和运算时间,提高了收敛速度和收敛精度,实现高精度测向,可同时对相干源和独立源进行波达方向估计,并且具有优秀的抗噪声性能和较高的估计成功概率,测向性能要优于基于粒子群算法的宽带测向方法。

    一种基于量子模因演化机理的波束空间测向方法

    公开(公告)号:CN108828503B

    公开(公告)日:2022-08-02

    申请号:CN201810589958.7

    申请日:2018-06-08

    Abstract: 本发明公开了一种基于量子模因演化机理的波束空间测向方法,属于阵列信号处理领域。主要步骤为:对信号采样数据进行波束空间处理,得到波束空间的极大似然目标方程;初始化量子模因方法的种群;构造并计算适应度,记录优质量子个体;对量子个体进行演化,产生新的量子个体;将用演化后得到的新种群与原种群合并,并选择新种群;对优质量子个体进行局部搜索,寻找优质解;将全局最优量子个体映射到波达方向的角度空间,作为测向结果输出。本发明具有计算量小,稳定性高的优点,且能对相干源进行测向,解决了现有极大似然类测向方法计算量大,系统复杂,而特征分解类测向方法无法对相干信号源进行有效测向这一理论和技术难题。

    基于量子记忆优化机制的高光谱遥感图像波段选择方法

    公开(公告)号:CN108509840B

    公开(公告)日:2021-10-01

    申请号:CN201810106446.0

    申请日:2018-02-02

    Abstract: 本发明涉及一种基于量子记忆优化机制的高光谱遥感图像波段选择方法,首先计算高光谱遥感图像所有波段的相关性向量或者相关性矩阵;对相关性向量或者相关性矩阵的每个元素求其倒数,并分别命名其为独立性向量或者独立性矩阵;依据所有波段的独立性向量或者独立性矩阵设定波段子空间独立性容量阈值,进行波段子空间划分,在每个波段子空间中选择一个波段,或从每个波段子空间内按比例选择波段,确定所选波段子集的维数;然后通过设计模拟人类认知过程的量子记忆优化机制并结合量子旋转门实现对最优波段子集的优化搜寻。本发明不仅适用于多维优化问题,同时也适用于高维优化问题,与已有算法相比分类精度高,运行时间短,更具有工程应用和推广价值。

    基于量子鸡群演化机制的环形天线阵列稀疏方法

    公开(公告)号:CN107657098B

    公开(公告)日:2021-01-05

    申请号:CN201710834252.8

    申请日:2017-09-15

    Abstract: 本发明提供的是一种基于量子鸡群演化机制的环形天线阵列稀疏方法。1、建立环形天线阵列稀疏模型;2、设置初始参数;3、设计适应度函数;4、计算种群中每只鸡的适应度值,区分鸡的种类并划分子种群;5、6及7分别构建公鸡、母鸡和小鸡的量子矢量旋转角更新公式,更新量子矢量旋转角,更新的量子位置;8、过测量的方式转化为其{0,1}编码位置,计算该{0,1}编码位置的适应度值,并更新每只鸡的个体历史最优解和全局最优解;9:判断是否达到最大迭代次数。该方法具有更快的收敛速度和更高的收敛精度,并在解决环形天线阵列稀疏构建的问题中具有很好的稀疏效果,很大程度的降低了天线阵列系统的复杂度和成本,达到了预期的要求。

    一种基于量子社会情感优化的MassiveMIMO上行系统功率分配方法

    公开(公告)号:CN108173580B

    公开(公告)日:2020-12-29

    申请号:CN201810086133.3

    申请日:2018-01-29

    Abstract: 本发明公开了一种基于量子社会情感优化的Massive MIMO上行系统功率分配方法,属于5G关键技术领域。本发明通过建立Massive MIMO系统功率分配模型,在初始化量子社会群体及系统参数中输出初始历史最优解,并通过实数化处理量子个体输出初始全局最优解,之后不断更新量子个体,当迭代次数大于预先设定的最大迭代次数时输出全局最优解,经实数化处理得到最佳功率分配方案。本发明充分考虑了在Massive MIMO上行系统中,用户的发送功率不得超过其最大发送功率的限制,同时满足用户最低传输速率和系统最低传输速率等要求,所设计的功率分配方法保证了服务质量,具有搜索速度快、全局搜索能力强的优点,更能满足实际工程的需要,为Massive MIMO上行系统的功率分配提供了一种新方法。

Patent Agency Ranking