-
公开(公告)号:CN109884719B
公开(公告)日:2020-04-10
申请号:CN201910184055.5
申请日:2019-03-12
Applicant: 吉林大学
IPC: G01V3/14
Abstract: 本发明属于地球物理探测技术领域,尤其是一种连续发射、快速分层探测的核磁共振装置及方法,该装置包括:上位机、主控制器、发射电路以及接收电路;发射电路的储能通过储能电容提供,并通过储能电容与发射桥路连接在发射线圈内产生发射电流,所述储能电容通过继电器组连接主控制器,主控制器通过继电器组设定储能电容的容值;发射电路包括直流电源在主控制器控制下为储能电容充电;发射电路包括桥路驱动器驱动发射桥路;接收电路通过高压继电器的开合来接入或是断开接收线圈,所述高压继电器通过主控制器控制,通过对储能电容一次性充电,而多次连续发射电流,连续采集的方式,减少了充电过程中造成的时间浪费,大大缩短了核磁共振探测的时间。
-
公开(公告)号:CN110696912A
公开(公告)日:2020-01-17
申请号:CN201911155148.1
申请日:2019-11-22
Applicant: 吉林大学
IPC: B62D5/04
Abstract: 本发明公开了乘用车多模式电机驱动线控转向系统及其转向控制方法,所述系统由方向盘单元、电子控制单元和转向执行单元组成,方向盘单元中设置有路感模拟组件实现路感模拟,方向盘单元通过转矩传递机构与转向执行单元相连,转向执行单元中采用双传动轴结构以实现对左右两侧车轮转向独立控制,方向盘单元与转向执行单元中各电元件均与电子控制单元信号连接,以实现对转向系统实施状态信号的采集以及对电控元件控制信号的发送;所述转向控制方法是在相应的电机失效状态下,通过ECU控制相应的电磁离合器分离或结合,进而实现控制转向转矩传递。本发明实现在系统电元件失效的情况下仍能保证车辆顺利完成转向动作,大大提高了转向系统的安全性。
-
公开(公告)号:CN106772161B
公开(公告)日:2019-04-30
申请号:CN201710110315.5
申请日:2017-02-28
Applicant: 吉林大学
Abstract: 本发明涉及一种无线传感网络的多通道阵列式接收线圈及探测方法,该线圈由接收线圈、线圈信息感知部分、线圈信号接收部分、无线通信部分和线圈信息运算处理部分构成,线圈信息感知部分、线圈信号接收部分和无线通信部分分别与接收线圈相连;线圈信息运算处理部分经无线通信部分与线圈信息感知部分、线圈信号接收部分相连。本发明采用无线数据回传降低了布线复杂度和系统造价,阵列式核磁共振信号采集获得了信息丰富的水质子核磁共振信号,为信号与噪声分离和地下水分布反演解释提供有力支持,并提出一种提高水质子核磁共振FID信噪比的方法,使核磁共振探水仪可在较强噪声环境下获取地下水文信息,阵列式布设提高了局部区域详细探测水文信息的效率。
-
公开(公告)号:CN108227022A
公开(公告)日:2018-06-29
申请号:CN201711483495.8
申请日:2017-12-29
Applicant: 吉林大学
IPC: G01V3/14
Abstract: 本发明涉及一种基于SQUID的地空磁共振探测装置,包括:发射机通过一发射切换控制电路连接发射线圈,向发射线圈通入直流电流产生预极化磁场,增大地下水体中氢质子磁化强度以及向发射线圈通入拉莫尔频率的交流电流激发氢质子进动,停止激发电流,氢质子在地磁场作用下产生弛豫现象;SQUID接收磁共振信号,连接SQUID读出电路,将SQUID采集的磁信号转化为电信号;接收机搭载在飞行器上,与SQUID读出电路连接;上位机发与所述接收机以及发射机之间通讯连接,发出控制信号,控制发射机发射直交电流的切换和关断,控制接收机对信号的采集。本发明优点探测范围大、效率高,环境适应性强,且兼具高灵敏度及信噪比等优势。
-
公开(公告)号:CN107102367B
公开(公告)日:2018-01-05
申请号:CN201710269458.0
申请日:2017-04-24
Applicant: 吉林大学
Abstract: 本发明为直升机预极化场磁共振油气探测装置及探测方法。包括吊载在直升机下方的预极化线圈和发射/接收线圈,在预极化线圈中通入电流产生直流电场,对油中的氢核进行预极化,增加氢核的磁化强度,预极化过程完成后,通过向地下发射频率为当地拉莫尔频率的交变电流,激发地下油中的氢核形成宏观磁矩,这一宏观磁矩在地磁场中进行旋进运动,当激发停止后,氢核自旋产生弛豫现象,通过接收线圈感应宏观磁矩进动产生的核磁共振信号,最后传至上位机进行数据解释。本发明采用预极化场提高磁化强度,可实现原位非侵入式探测的目的,具有速度快、效率高、成本低、通行性好、可大面积覆盖的优势,既能节省探测时间,又能获得高信噪比高精度的探测结果,将为提高我国的油气勘查能力奠定基础。
-
公开(公告)号:CN104897640B
公开(公告)日:2017-10-20
申请号:CN201510239438.X
申请日:2015-05-12
Applicant: 吉林大学
IPC: G01N21/65
Abstract: 一种通过在热点区域添加承载平台制备高灵敏度表面增强拉曼散射(SERS)基底的方法,属于分析检测技术领域。具体是在硅基底上构筑悬空纳米领结结构阵列,通过溶解银的时间来调控金属纳米领结的间距。而胶体球之间制备的连接桥在除去部分银的过程中得以保留,最终成为承载拉曼探针分子的平台,这有利于更多的拉曼探针分子位于热点区域,实现了对热点区域的充分利用,该结构具有很好的拉曼检测性能。此种定位检测物于热点区域的理念也可以用于制备其他结构,这为检测基底(不只是拉曼基底)的制备开辟了一条新的蹊径。
-
公开(公告)号:CN107167846A
公开(公告)日:2017-09-15
申请号:CN201710358129.3
申请日:2017-05-19
Applicant: 吉林大学
IPC: G01V3/10
CPC classification number: G01V3/10
Abstract: 本发明公开了地空结合多功能高精度快速地磁信息测量装置及测量方法,该装置包括地面地球磁场信息测量部分和空中悬挂式高精度快速地球磁场信息测量部分。若干个地面部分沿着测线布置用于测量地球表面磁场等信息,空中悬挂式高精度快速地球磁场信息测量部分装载在飞行平台上,使其距离地面具有一定高度用于测量空中地球磁场等信息。地面部分通过无线通信将测量的信息发送至空中悬挂式高精度快速地球磁场信息测量部分,地面和空中测量的整个信息数据通过卫星通信终端传输到卫星网络直到地面监测查询终端。本发明具有地空有机结合对地球磁场测量的高精度、快速高效、多参数测量的有益效果,结合了地球磁场测量、地图信息和GIS,具有良好的系统智能先进性,具有对复杂地形的地区地磁信息长期测量优势。
-
公开(公告)号:CN107102369A
公开(公告)日:2017-08-29
申请号:CN201710411035.8
申请日:2017-06-05
Applicant: 吉林大学
IPC: G01V3/14
CPC classification number: G01V3/14
Abstract: 本发明涉及一种机载低温超导核磁共振浅层油渗漏探测装置及探测方法,是由直升机内装有上位机和低温超导机载核磁共振浅层油渗漏探测装置,预极化线圈和杜瓦瓶通过绳索吊装在直升机下方,且杜瓦瓶吊挂在预极化线圈中央,杜瓦瓶轴线垂直于地面,杜瓦瓶内装有SQUID,杜瓦瓶和预极化线圈通过导线与低温超导机载核磁共振浅层油渗漏探测装置连接构成。采用“空中发射—空中接收”模式,适用于浅层油渗漏检测,解决了传统仪器检测分辨率低下的难题,实现原位非侵入式检测,速度快,极大地提高了信噪比,为之后的反演提供了良好的基础。操作简单,极大地提高了探测范围。不仅减少了探测时间,增大探测面积,还能获得高信噪比高精度的检测结果。
-
公开(公告)号:CN106814400A
公开(公告)日:2017-06-09
申请号:CN201710177107.7
申请日:2017-03-23
Applicant: 吉林大学
CPC classification number: Y02E70/40 , G01V3/14 , H02J7/0052 , H02J2007/0059 , H02M7/493
Abstract: 本发明为一种基于阵列逆变充电的核磁共振探水发射装置及工作方法。PC机,内置有上位机软件对参数进行设置;MCU主控单元与PC机进行通讯,对阵列逆变电源进行控制;FPGA逻辑控制单元,接受所述MCU主控单元的启动命令,产生的具有拉莫尔频率时序通过驱动模块驱动发射桥路,使得发射桥路工作,将高压直流电信号转变成具有当地拉莫尔频率的高压交变电信号;能释单元,通过MCU主控单元控制,连接激发线圈的储能电容组,在发射结束后根据储能电容组中的剩余电量,通过能释单元将剩余电量进行释放。本发明能够保持每次发射激发电压,还能够在多次叠加后保持初始设定电压,而且在减小体积的同时提高对储能电容组的充电效率。
-
公开(公告)号:CN118885967B
公开(公告)日:2025-03-25
申请号:CN202410963451.9
申请日:2024-07-18
Applicant: 吉林大学
IPC: G06F18/25 , G06N3/0442 , G06N3/0455 , G06N3/08
Abstract: 本发明公开了一种基于深度学习和运动学模型的车辆轨迹融合预测方法,包括:采集目标车辆行驶时的场景信息,使用深度学习预测模型对目标车辆在未来时域内的状态信息进行预测;将预测的目标车辆的状态信息通过卡尔曼滤波器建立目标车辆轨迹预测模型,预测下一时刻目标车辆的运动学状态信息;将当前时刻目标车辆的综合状态信息、预测的下一时刻目标车辆的状态信息、预测的下一时刻目标车辆的运动学状态信息等作为Weight_LSTM网络模型的输入,预测下一时刻深度学习预测模型的权重系数和目标车辆轨迹预测模型的权重系数,对预测的目标车辆的状态信息和预测的目标车辆的运动学状态信息进行加权,预测出下一时刻目标车辆的综合状态信息。
-
-
-
-
-
-
-
-
-