-
公开(公告)号:CN114952040A
公开(公告)日:2022-08-30
申请号:CN202210671527.1
申请日:2022-06-14
IPC: B23K26/382 , B23K26/60 , B23K26/70
Abstract: 一种镍基合金曲面的飞秒激光钻孔方法,涉及一种合金曲面的激光钻孔方法。本发明是要解决目前合金曲面的飞秒激光钻孔时孔锥度不可控、整体圆度较差的技术问题。在本发明的镍基合金曲面的飞秒激光钻孔方法中,由于激光功率随着加工深度的增加而增加,且单层进给量阶段式降低,因此在钻孔过程中可以降低由于孔深度的增加使能量吸收率降低的负面影响,提高了能量利用率,使出口一侧能量密度显著增加,从而改善了锥度,提高了小曲率曲面微孔加工的质量。
-
公开(公告)号:CN114417681B
公开(公告)日:2022-06-17
申请号:CN202210335488.8
申请日:2022-04-01
Applicant: 中国工程物理研究院流体物理研究所 , 哈尔滨工业大学
Abstract: 本发明公开了基于动态决策和神经网络的二维结构变形监测方法及装置,包括获取二维平面结构不同位置不同时间的应变数据和结构变形值;构建数据集;构建深度神经网络模型并进行模型训练;对实时采集的应变数据进行动态决策分析,得到动态决策结果;将不同时刻的应变数据分别输入基于卷积神经网络的变形重构模型、基于时间卷积网络的变形预测模型,根据基于卷积神经网络的变形重构模型进行变形重构,得到各监测位置处的变形重构量;根据基于时间卷积网络的变形预测模型进行变形预测,得到各监测位置处的变形预测结果;根据变形重构量、变形预测结果,结合传感器坐标位置信息,采用三次样条插值法拟合出整个平面结构的变形场。发明变形重构精度高。
-
公开(公告)号:CN114417642B
公开(公告)日:2022-06-10
申请号:CN202210314858.X
申请日:2022-03-29
Applicant: 中国工程物理研究院流体物理研究所 , 哈尔滨工业大学
IPC: G06F30/20 , G06F30/10 , G06F119/14
Abstract: 本发明公开了一种大型结构表面变形预测方法,包括以下步骤:基于大型结构的相关参数计算各个背架与各个骨架在连接处的变形转角大小;基于重力场、温度场、风场以及所述变形转角大小构建骨架力学模型;基于所述骨架力学模型计算所述大型结构的形变函数;基于所述形变函数和所述变形转角大小计算所述大型结构在对应位置处的表面变形值,基于所述变形转角大小和应力函数计算所述大型结构在对应位置处的表面应力值。本发明提供一种大型结构表面变形预测方法,旨在解决现有技术中因忽略温度场以及风场对结构表面变形的影响从而导致预测的结构变形存在极大的误差的技术问题。
-
公开(公告)号:CN114417537A
公开(公告)日:2022-04-29
申请号:CN202210335443.0
申请日:2022-04-01
Applicant: 中国工程物理研究院流体物理研究所 , 哈尔滨工业大学
IPC: G06F30/17 , G06F30/23 , G06F17/16 , G06F119/14
Abstract: 本发明公开了一种开式行骨架结构变形场实时测量方法、装置及系统,包括:对结构施加模拟负载,采集数据,形成预标定数据集;获取被测结构的实时应力应变数据;对一定数量测量点的位移或坐标进行测量;将实时获取的一组应力应变数据与预标定数据集各组数据进行相似度计算;进行相似度排序,从预标定数据集中选取K组预标定数据;根据相似度数据,计算相似度系数矩阵;根据相似度系数矩阵和所选取的预标定数据,对当前受力状态下的监测点变形位移数据进行计算;采用差值方法对整个阵面变形场进行差值计算,拟合出整个阵面上任意点的变形量,得到实时变形场拟合数据。本发明方法计算效率高,速度快、变形场测量时间延迟低,且精度较高。
-
公开(公告)号:CN109178358A
公开(公告)日:2019-01-11
申请号:CN201811044282.X
申请日:2018-09-07
Applicant: 哈尔滨工业大学
Abstract: 本发明提供一种宽通用性、强适应性和弱冲击性的基于喷管的航天器柔性捕获系统,属于非合作航天器捕获技术领域。本发明包括气囊装置和定位装置;定位装置,与气囊装置连接,用于检测气囊装置在航天器喷管喉部的位置,并带动气囊捕获装置进入航天器喷管喉部;气囊装置,用于将未充气的气囊伸入航天器喷管喉部,对所述气囊充气,充气后的气囊锁紧喷管喉部,实现捕获。所述气囊装置中的气囊包括锁紧气囊和缓冲气囊;捕获时,锁紧气囊位于喷管喉部前扩展段,缓冲气囊位于喷管喉部的后扩展段。大多数航天器都具有喷管结构,本发明采用气囊充气展开捕获喷管,对喷管尺寸具有强适应性。
-
公开(公告)号:CN109178354A
公开(公告)日:2019-01-11
申请号:CN201811046042.3
申请日:2018-09-07
Applicant: 哈尔滨工业大学
IPC: B64G1/64
Abstract: 为了解决现有在捕获非合作航天器后对接时的通用性和适应性差的问题,本发明提供一种基于星箭对接环的非合作航天器对接锁紧系统,涉及非合作航天器捕获技术领域。本发明包括:对接装置,用于测量和调整星箭对接环与星箭对接环锁紧装置的相对位置和姿态,使锁紧装置与星箭对接环的对接面接触;锁紧装置,用于当锁紧装置与星箭对接环的对接面接触时,从径向锁紧星箭对接环的外沿。所述锁紧装置包括多个锁紧部件和运动平台,多个锁紧部件分布在运动平台上,多个锁紧部件在运动平台上能够径向收缩或扩张。星箭对接环是绝大部分航天器都具备的结构,采用径向间距可调的卡爪设计,能够适应不同的星箭对接环直径。
-
公开(公告)号:CN104333488A
公开(公告)日:2015-02-04
申请号:CN201410614010.4
申请日:2014-11-04
Applicant: 哈尔滨工业大学
IPC: H04L12/26
Abstract: 云服务平台性能测试方法,属于计算机云服务技术领域,涉及一种云服务平台性能测试方法,本发明为解决现有的测试工具和测试项目无法满足云服务平台性能评测的问题。本发明的性能测试方法对云服务平台的服务接口层、平台管理层和虚拟资源层进行测试;该测试方法包括虚拟化性能测试、资源管理能力测试和服务提供能力测试;虚拟化性能测试用于测试云服务平台底层的虚拟资源的性能;资源管理能力测试用于测试云服务平台对虚拟资源的管理能力;服务提供能力测试用于测试云服务平台对外部用户提供服务的能力。本发明用于对云服务平台进行评测。
-
公开(公告)号:CN1522973A
公开(公告)日:2004-08-25
申请号:CN03132600.5
申请日:2003-09-04
Applicant: 哈尔滨工业大学
CPC classification number: Y02W10/15
Abstract: 硫酸盐有机废水乙醇型发酵生物脱硫方法,它涉及厌氧微生物处理硫酸盐有机废水中,在同一个构筑物内实现产酸发酵和以硫酸盐还原为目的的脱硫方法。它按以下步骤进行:1.采用连续流完全混合搅拌槽式反应器,并在反应器中加入活性炭填料;2.对活性污泥进行驯化;3.乙醇型发酵生物脱硫反应系统的启动:启动时,进水用糖蜜和硫酸钠配制而成,COD为3200~3600mg/L、SO42-为640~680mg/L,20天启动完成;4.反应器运行控制:控制pH值6.2~6.9、碱度1400~1600mg/L和HRT6.2~10.6h,系统可稳定运行。它解决了目前在处理硫酸盐有机废水中,难以提高硫酸盐还原菌处理能力的问题。
-
公开(公告)号:CN120068200A
公开(公告)日:2025-05-30
申请号:CN202411904993.5
申请日:2024-12-23
Applicant: 中铁建大桥工程局集团第四工程有限公司 , 哈尔滨工业大学 , 中国铁路西安局集团有限公司第二工程指挥部 , 中铁第一勘察设计院集团有限公司
IPC: G06F30/13 , G06F30/23 , G06F111/08 , G06F119/02
Abstract: 一种融合球铰概率性能的桥梁转体施工易损性评估方法,涉及桥梁转体施工技术领域。选取混凝土强度为随机向量并获得初始点集;对点集进行剖分和重整并计算赋得概率;按照调整后的点集根据混凝土强度建立球铰有限元模型,进行动力时程分析;利用有限差分法数值求解广义概率密度演化方程,通过应力概率密度曲线及应力累计分布函数曲线展示各球铰表面最大应力对应的概率;定义转动体系损伤评定指标;计算各个转动速度下损伤评定指标对应的概率。通过引入混凝土强度的不确定性因素,结合球铰在转体施工过程中受转动速度影响的动态荷载效应,能够快速给出球铰转动时的损伤概率,提高桥梁转体施工易损性的评估精度和效率。
-
公开(公告)号:CN119979944A
公开(公告)日:2025-05-13
申请号:CN202510177653.5
申请日:2025-02-18
Applicant: 哈尔滨工业大学
Abstract: 本发明涉及一种室温强塑性与高温强度相匹配的间隙强化钛基复合材料及其制备方法,属于钛基复合材料技术领域。为解决现有将间隙元素引入钛基复合材料的方法难以实现间隙元素均匀分布的问题,本发明首先将间隙元素添加物粉末、增强相反应物粉末和钛合金基体粉末混合球磨得到原料粉末,通过热压烧结或热等静压将原料粉末制成原料棒材,通过等离子旋转电极雾化制粉将原料棒材制成间隙元素强化钛基复合粉末;最后将所得钛基复合粉末进行热压烧结或热等静压得到间隙强化钛基复合材料。本发明在钛基复合粉末中原位引入间隙元素,实现了对间隙元素含量和分布的精确调控,所得系列钛基复合材料在室温下具有良好的强塑性匹配,高温强度也有较大提升。
-
-
-
-
-
-
-
-
-