一种基于神经网络的INS和磁力计组合定位方法

    公开(公告)号:CN109506647A

    公开(公告)日:2019-03-22

    申请号:CN201811582860.5

    申请日:2018-12-24

    Abstract: 本发明属于磁力计和惯性导航系统数据融合领域和智能算法辅助定位领域,具体涉及一种基于神经网络的INS和磁力计组合定位技术。针对运行中GPS失效时的定位方法,现有方法大多集中于使用智能学习算法来解决。但是目前的方法都集中于利用智能学习算法来建立INS数据和定位误差之间的关系。此类方法只能保持短暂的定位精度,随着GPS失效时间的延长,终将发散。本发明提出了一种基于磁力计的组合定位方案,从理论上分析了磁力计与位置之间的关系,在GPS有效时利用智能学习算法建立磁力计与位置之间的模型。随后当GPS失效时,利用磁力计和训练完成的智能算法预测位置。由于预测的位置可能是离散且带噪声的,所以利用INS组合得到连续且精确的位置。

    一种无需双目同步的直线轨迹快速计算方法

    公开(公告)号:CN109285189A

    公开(公告)日:2019-01-29

    申请号:CN201810765018.9

    申请日:2018-07-12

    Abstract: 本发明属于基于双目相机的立体视觉技术领域,具体涉及一种无需双目同步的直线轨迹快速计算方法。包括以下步骤:双目相机拍摄作直线运动的目标物体,左右相机分别获得图像,获取图像中目标物体的像素坐标,以双目相机中左眼或右眼相机光心为原点建立空间摄像机坐标系,将图像中的二维点转换为空间中的三维点;在摄像机坐标系下,对左眼相机任取两幅图像分别提取目标点坐标,与左眼光心确定平面方程一,对右眼相机任取两幅图像分别提取目标点坐标,与右眼光心确定平面方程二,两平面相交可确定直线运动轨迹。本方法计算直线运动轨迹时无需双目图像特征点匹配,减少轨迹计算复杂程度,解决了在高速摄像下传统双目测距方法中特征点匹配困难的问题。

    一种无刷直流电机四象限运行的PWM控制方法

    公开(公告)号:CN106452229A

    公开(公告)日:2017-02-22

    申请号:CN201610940746.X

    申请日:2016-11-01

    Abstract: 本发明涉及一种无刷直流电机四象限运行的PWM控制方法。包括,步骤一:无刷直流电机采用三相六状态两相绕组导通方式,得到正、反转下霍尔位置信号与相绕组导通的对应逻辑关系;步骤二:不考虑开关管的死区时间,在任一状态内,令其中一相绕组对应开关管导通,另外一相绕组上、下桥臂开关管互补导通,在同一运转方向下同时实现电动和回馈制动运行;步骤三:根据输入电机转速判断此时运转方向,选择该运转方向下的PWM控制方式,驱动电机旋转,实现四象限运行。本发明提供了一种无刷直流电机四象限运行的新型PWM控制方法,在同一运转方向下能同时实现电动和回馈制动运行,并打破了传统单斩和双斩PWM控制方式的常规。

    一种基于延迟霍尔信号抑制无刷直流电机转矩脉动的方法

    公开(公告)号:CN106059406A

    公开(公告)日:2016-10-26

    申请号:CN201610422488.6

    申请日:2016-06-15

    CPC classification number: Y02P80/116 H02P6/10

    Abstract: 本发明提供的是一种基于延迟霍尔信号抑制无刷直流电机转矩脉动的方法。步骤一:获取无刷直流电机的参数,所述参数包括额定电压、额定转速、额定功率、反电动势系数和磁极对数;步骤二:将步骤一中得到的参数输入到延迟时间控制模块,由公式计算得到延迟时间;步骤三:霍尔信号通过延迟时间控制输入到脉宽调制,控制三相逆变器,驱动无刷直流电机旋转。本发明不需要任何额外的电器元件,只需知道无刷直流电机参数就可以得到延迟时间,将霍尔信号延迟后可抑制转矩脉动,在不增加成本的前提下,提高了电机运行效率。方法简单,易于实现。

    一种船舶航行增阻等级的评估方法

    公开(公告)号:CN105550495A

    公开(公告)日:2016-05-04

    申请号:CN201510882440.9

    申请日:2015-12-03

    CPC classification number: G06F19/00 G06F17/5036 G06F17/5095

    Abstract: 本发明公开了一种船舶航行增阻等级评估方法,包括如下步骤,步骤1:采集船舶航速与船舶航行姿态信息,根据前述信息获得船舶静水阻力和船舶风浪中阻力;步骤2:对船舶静水阻力、船舶风浪中阻力、船舶推力三个物理量进行预处理;步骤3:对输入量与输出量进行模糊化,建立论域上的模糊集合,将输入量和输出量分为大PB、中PM、小PS和零ZO四个等级,所说输入量为船舶静水阻力、船舶风浪中阻力和船舶推力,所说输出量为船舶航行增阻;步骤4:根据模糊规则生成输入输出表,根据输入得到船舶航行增阻等级在辨识论域上的模糊集;步骤5:解模糊化,得到精确的船舶航行增阻等级。

    一种基于损耗模型直流无刷电机直接转矩控制方法

    公开(公告)号:CN104104295A

    公开(公告)日:2014-10-15

    申请号:CN201410356927.9

    申请日:2014-07-23

    Abstract: 本发明涉及一种基于损耗模型直流无刷电机直接转矩控制方法,在直流无刷电机运行过程中,通过转速、电流传感器检测出直流无刷电机的转速ωr和定子电流Is,经转矩、磁链计算模块得到定子磁链ψs和电磁转矩Te;将Te送入最优损耗效率优化控制器,得出定子磁链最优值ψsref;将ψsref、ψs作比较,得出Δψs=ψsref-ψs;将实际转速ωr与给定转速作比较,得出Δωr经速度调节器得出参考电磁转矩与Te比较得出将ψs送入定子磁链扇区辨别器,将Δψs、ΔTe分别送入滞环调节器,得出开关状态选择表所需参数,即电磁转矩状态变量ST、定子磁通状态变量Sψ、转矩角θ,再经开关状态选择表得出最小损耗模式下的最佳开关状态,经由逆变器控制直流无刷电机。

    一种三相电压型PWM整流器直接功率控制方法

    公开(公告)号:CN104052314A

    公开(公告)日:2014-09-17

    申请号:CN201410314393.3

    申请日:2014-07-03

    Abstract: 本发明涉及PWM整流控制领域,具体涉及一种三相电压型PWM整流器直接功率控制方法。本发明包括:检测整流器交流侧电网电压、输入电流及直流侧母线电压;将检测到的电网电压、输入电流经abc/αβ变换,得到电网电压和输入电流在αβ坐标系下的分量;确定电网电压U的幅角和其所在扇区;将直流侧采样电压与给定值相比较后的差值经PI调节器输出;将输出值与采样电压的乘积作为有功功率的给定;有功功率给定与实时有功功率的差值经滞环比较器后产生开关信号;实时无功功率经滞环比较器后产生Sq;产生开关信号驱动主电路开关管。本发明消除了无功功率失控区,提高了系统的可靠性和稳定性,方法简单,易于实现。

    基于多关系发现的个性化推荐方法

    公开(公告)号:CN114238755A

    公开(公告)日:2022-03-25

    申请号:CN202111456522.9

    申请日:2021-12-01

    Abstract: 本发明提出基于多关系发现的个性化推荐方法,本发明使用图神经网络等技术构建基于多关系发现的个性化推荐模型,利用用户个人信息和交互序列数据,构建用户社交关系图、用户交互关系图、基于个人信息的用户潜在关系图和基于交互序列的用户潜在关系图,模型训练过程中不断更新潜在关系图,充分考虑和挖掘用户间的多种关系,大大提高了个性化推荐性能。

    一种无位置传感器无刷直流电机电压采样偏移的补偿方法

    公开(公告)号:CN109546903B

    公开(公告)日:2021-09-28

    申请号:CN201811354334.3

    申请日:2018-11-14

    Abstract: 本发明涉及一种无位置传感器无刷直流电机电压采样偏移的补偿方法,基于反电动势法,无位置传感器无刷直流电机在获取位置信息的过程中,需采样相电压或线电压差,由于电压传感器灵敏度不足以及滤波电路中运算放大器的零点漂移会使采样的线电压差或相电压信号产生偏移,形成不平衡的过零点,影响电机换相,严重影响电机运行。针对这一问题,本发明根据换相期间反电动势过零点信息,分析了电压偏移对过零点采样的影响,提出了一种无位置传感器无刷直流电机电压采样偏移的补偿方法。利用仿真手段实现的补偿控制系统,在系统计算出误差后,在后续的换相周期中进行了相应的补偿,结果表明这种方法的可行性和有效性。

    一种直流母线电压控制的无刷电机换相方法

    公开(公告)号:CN107437906B

    公开(公告)日:2019-12-06

    申请号:CN201710565833.6

    申请日:2017-07-12

    Abstract: 本发明公开了一种直流母线电压控制的无刷电机换相方法。本发明的技术方案要点为:根据微分方程计算补偿电压,在电机非换相阶段,根据补偿电压对电容充电;在电机换相阶段,电容与电源串联向电机供电提高母线电压。换相期间电容向电机提供能量,电容电压下降,换相结束时,母线电压Udc刚好保持在4E+3IR,其中E为反电动势,I为相电流平均值,R为电机绕组电阻。即在整个换相阶段,电机始终处于低速运行状态。在此阶段,使用传统的PWM方法调制逆变器,从而有效抑制换相转矩脉动。本发明在在整个换相阶段使用与电机正常导通时相同的控制策略控制逆变器,简化了控制器的设计,提高了系统的稳定性,具有良好的工程应用前景。

Patent Agency Ranking