-
公开(公告)号:CN116069481B
公开(公告)日:2023-07-18
申请号:CN202310354096.0
申请日:2023-04-06
摘要: 本发明属于图形处理器资源调度领域,提供了一种共享GPU资源的容器调度系统及调度方法,针对GPU资源由系统外部在各应用平台进行复用,将导致服务器的反复初始化及迁移,造成人工损耗以及时间的浪费的问题,本发明考虑从计算任务移植方面进行GPU资源的共享,在GPU资源池上构建容器系统,通过将各个平台的任务容器化后调度到提供的资源池GPU节点上,实现异构平台间GPU资源共享,提高整体平台的GPU资源利用率可满足云计算、大数据、人工智能和高性能计算场景平台的快速灵活部署实施。
-
公开(公告)号:CN115171710A
公开(公告)日:2022-10-11
申请号:CN202210799728.X
申请日:2022-07-08
申请人: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学
IPC分类号: G10L21/007 , G10L21/0224 , G10L21/0232 , G10L19/02 , G10L25/63 , G06N3/08 , G06N3/04
摘要: 本发明属于语音信号处理的语音增强技术领域,提供了一种基于多角度判别的生成对抗网络的语音增强方法及系统。该方法包括,获取带噪声语音信号;基于带噪声语音信号,采用训练好的生成对抗网络,得到增强后的语音信号;其中,所述生成对抗网络包括一个生成器和四个判别器。本发明的多角度判别包括:增强后语音信号、干净语音与情绪语音之间的差异;同时添加从频域判别学习增强后语音信号、干净语音与情绪语音之间的频域差异。本发明从不同语音信号的语音成分进行判别,以及语音的时域频域角度,能够从不同角度充分学习语音成分,为生成器提供足够多的反馈信息,可以有效改善语音失真,提高增强后语音的语音质量。
-
公开(公告)号:CN115019833A
公开(公告)日:2022-09-06
申请号:CN202210852485.1
申请日:2022-07-20
申请人: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学
摘要: 本发明提供一种基于时频特征和全局注意力的语音情感识别方法及系统,涉及语音信号处理与模式识别技术领域,该方法通过提取三维对数梅尔谱图的时间特征和频率特征,并进行分析处理,以充分利用语音信号的静态特征和动态特征,以及静态特征和动态特征之间的通道联系,得到更深层次的特征联系,丰富了特征维度;并且,提取时间维度和空间(频率)维度数据,将其进行融合;利用空间特征提取模块和全局上下文注意力模块对时间‑频率特征进行分析,充分利用语音信号所包含的空间特征和时间特征,并对融合后的特征进行通道间的特征进行分析,其分析的特征更为全面,从而可以提高情感识别结果的准确率。
-
公开(公告)号:CN114968600A
公开(公告)日:2022-08-30
申请号:CN202210849631.5
申请日:2022-07-19
申请人: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学
摘要: 本发明涉及一种基于新一代申威众核处理器的从核阵列任务分配实现负载均衡的方法,包括:各个从核先完成当前任务后,和主核通信,自动获取下一次任务,继续执行获取到的任务直至任务结束;主核负责任务的分配和更新;从核自动获取下一次任务包括单从核自动获取任务和多从核自动获取任务,其中,多从核自动获取任务方式按照从核分组进行,根据申威众核处理器硬件架构,从核可以进行多种从核分组方式,主要包括行从核自动获取任务方式、列从核自动获取任务方式和从核簇自动获取任务方式。本发明基于主从异步加速模式来使得从核自动获取任务,进行加速处理,进而解决负载不均衡的方法。
-
公开(公告)号:CN112906382B
公开(公告)日:2022-06-21
申请号:CN202110160984.X
申请日:2021-02-05
申请人: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学
IPC分类号: G06F40/284 , G06N3/08
摘要: 本发明公开了基于图神经网络的政策文本多标签标注方法及系统,包括:获取待标注的政策文本;对待标注的政策文本进行预处理,对预处理后的政策文本进行分词;将分词得到的单词和预先得到的加权单词向量,输入到训练后的全连接神经网络中,输出待标注政策文本的多标签。高效的标签标注过程,利用廉价的计算资源,减少大量人工成本。相较于人工,实现更加精准的标签标注,不会因为文件信息量的长短而产生标签标注的错漏。及时性的政策文件多标签标注,快速进行所需政策文件的标签标注。减少了主观差异性,不会因为不同的工人的主观判断不同而造成大量的标注标签的差异性。
-
公开(公告)号:CN118643055A
公开(公告)日:2024-09-13
申请号:CN202411102971.7
申请日:2024-08-13
IPC分类号: G06F16/242 , G06F21/62
摘要: 本发明属于数据安全技术领域,具体涉及一种多属性成本约束下的隐私保护动态空间关键字查询方法、装置、电子设备及存储介质。该方法包括:数据拥有者利用密钥加密空间对象以及构建安全树索引并上传至云服务器;用户向服务代理发送包含更新信息的请求,服务代理利用密钥加密更新信息生成更新陷门和更新空间对象的加密结果,用以更新安全树索引和加密空间对象;用户向服务代理发送包含搜索信息的请求,服务代理基于密钥和搜索信息生成搜索陷门,用以在安全树索引中搜索目标空间对象并计算其综合属性成本指数,以得到有序的#imgabs0#密文集合,对该#imgabs1#密文集合解密得到结果集,最后根据结果集找到相应密文信息并返回给用户进行解密。
-
公开(公告)号:CN118606634A
公开(公告)日:2024-09-06
申请号:CN202411080709.7
申请日:2024-08-08
IPC分类号: G06F18/10 , G06F18/214 , G06F18/24 , G06N20/00
摘要: 本发明属于分布式机器学习的技术领域,具体涉及一种基于衰减噪声扰动的自适应保隐私分布式学习方法及装置。所述方法包括:根据节点裁剪后的样本梯度获取其本地梯度,节点的裁剪阈值随迭代轮次的增加而减小;对本地梯度注入高斯噪声,高斯噪声的强度随迭代轮次的增加成阶梯式衰减;聚合节点在每轮迭代中注入高斯噪声后的本地梯度,并利用聚合后的梯度更新本地模型参数,将更新后的本地模型参数广播给相邻节点进行参数更新;再聚合相邻节点更新后的模型参数,用于下一次迭代。本发明通过添加噪声以有效保护数据隐私,同时减小噪声误差保证数据的准确性。
-
公开(公告)号:CN117972795B
公开(公告)日:2024-06-11
申请号:CN202410382369.7
申请日:2024-04-01
摘要: 本发明属于数据安全的技术领域,更具体地,涉及一种基于异或过滤器的密态空间关键字安全检索方法及装置。该方法包括:数据拥有者端基于安全异或过滤器和地理哈希编码构建安全树索引,使用密钥对空间文本数据集进行加密,并将安全树索引及加密的空间文本数据集上传云服务器端;用户端给定查询,基于查询生成陷门并上传云服务器端;云服务器端根据陷门在安全树索引中搜索目标空间对象,并将由目标空间对象的密文构成的结果集返回给用户端;用户端根据结果集查询完整的密文信息,并使用密钥对密文信息进行解密,得到明文信息。本发明实现在一定空间范围内返回用户期望查询的空间文本数据信息并提供隐私保护,同时提高查询结果的准确性。
-
公开(公告)号:CN117707747B
公开(公告)日:2024-05-24
申请号:CN202410166795.7
申请日:2024-02-06
摘要: 本公开提供了基于资源使用率预测的作业超量分配调度方法及系统,涉及高性能计算的作业调度技术领域,若目标作业为长作业,则将长作业注册到资源使用率预测模块的工作队列中,获取实时的各节点的资源使用率数据,并输入至资源使用率预测模块预测所有运行长作业的节点未来设定时间各类资源的使用率情况,并使用调度算法根据资源使用率预测模型输出的预测数据确定最优运行节点;若目标作业为短作业,则根据其总体资源使用率的估计值在所有运行长作业的节点中进行匹配,并分配到最佳匹配节点;本公开有效解决了集群中的资源闲置问题。
-
公开(公告)号:CN116862021B
公开(公告)日:2024-05-03
申请号:CN202310953891.1
申请日:2023-07-31
IPC分类号: G06N20/00
摘要: 本发明公开了一种基于信誉评估的抗拜占庭攻击的去中心化学习方法及系统,涉及人工智能与信息安全交叉技术领域,该方法包括:基于获取的分布式网络中各个节点的训练数据,通过不断迭代训练实现去中心化学习,其训练过程中:分布式网络中的每一节点获取自节点的邻居节点当前轮次的局部参数,以此计算每一邻居节点当前轮次的信誉贡献值和信誉损失值,确定信誉有效值,进而确定自节点及其每一邻居节点的全局历史信誉值;基于全局历史信誉值为自节点及其每一邻居节点分配权重,进而更新自节点的局部参数并发送至邻居节点。本发明构建信誉评估机制,建立全局历史信誉值模型,通过权重分配,降低拜占庭攻击的影响,达到保护学习模型的目的。
-
-
-
-
-
-
-
-
-