基于图神经网络的政策文本多标签标注方法及系统

    公开(公告)号:CN112906382B

    公开(公告)日:2022-06-21

    申请号:CN202110160984.X

    申请日:2021-02-05

    IPC分类号: G06F40/284 G06N3/08

    摘要: 本发明公开了基于图神经网络的政策文本多标签标注方法及系统,包括:获取待标注的政策文本;对待标注的政策文本进行预处理,对预处理后的政策文本进行分词;将分词得到的单词和预先得到的加权单词向量,输入到训练后的全连接神经网络中,输出待标注政策文本的多标签。高效的标签标注过程,利用廉价的计算资源,减少大量人工成本。相较于人工,实现更加精准的标签标注,不会因为文件信息量的长短而产生标签标注的错漏。及时性的政策文件多标签标注,快速进行所需政策文件的标签标注。减少了主观差异性,不会因为不同的工人的主观判断不同而造成大量的标注标签的差异性。

    基于资源使用率预测的作业超量分配调度方法及系统

    公开(公告)号:CN117707747B

    公开(公告)日:2024-05-24

    申请号:CN202410166795.7

    申请日:2024-02-06

    IPC分类号: G06F9/48 G06F9/50

    摘要: 本公开提供了基于资源使用率预测的作业超量分配调度方法及系统,涉及高性能计算的作业调度技术领域,若目标作业为长作业,则将长作业注册到资源使用率预测模块的工作队列中,获取实时的各节点的资源使用率数据,并输入至资源使用率预测模块预测所有运行长作业的节点未来设定时间各类资源的使用率情况,并使用调度算法根据资源使用率预测模型输出的预测数据确定最优运行节点;若目标作业为短作业,则根据其总体资源使用率的估计值在所有运行长作业的节点中进行匹配,并分配到最佳匹配节点;本公开有效解决了集群中的资源闲置问题。

    基于信誉评估的抗拜占庭攻击的去中心化学习方法及系统

    公开(公告)号:CN116862021B

    公开(公告)日:2024-05-03

    申请号:CN202310953891.1

    申请日:2023-07-31

    IPC分类号: G06N20/00

    摘要: 本发明公开了一种基于信誉评估的抗拜占庭攻击的去中心化学习方法及系统,涉及人工智能与信息安全交叉技术领域,该方法包括:基于获取的分布式网络中各个节点的训练数据,通过不断迭代训练实现去中心化学习,其训练过程中:分布式网络中的每一节点获取自节点的邻居节点当前轮次的局部参数,以此计算每一邻居节点当前轮次的信誉贡献值和信誉损失值,确定信誉有效值,进而确定自节点及其每一邻居节点的全局历史信誉值;基于全局历史信誉值为自节点及其每一邻居节点分配权重,进而更新自节点的局部参数并发送至邻居节点。本发明构建信誉评估机制,建立全局历史信誉值模型,通过权重分配,降低拜占庭攻击的影响,达到保护学习模型的目的。