一种聚乙二醇/羟丙基纤维素碳纳米管复合固-固相变材料及其制备方法

    公开(公告)号:CN110804301A

    公开(公告)日:2020-02-18

    申请号:CN201911262973.1

    申请日:2019-12-11

    Abstract: 本发明公开了一种聚乙二醇/羟丙基纤维素碳纳米管复合固-固相变材料,由聚乙二醇(PEG)、异氰酸酯(MDI)、羟丙基纤维素(HPC)通过化学接枝反应制得,相变材料在80-120℃条件下,发生相变,保温1-2小时仍然保持稳定的固态,且没有小分子泄露;相变材料的相变过程为固-固相变,相变温度为32-54℃,相变焓值为99.5-130.8 J/g,导热率为0.2494-0.5239 W/m.K。其制备方法包括以下步骤:1)NCO-PEG预聚物的制备;2)交联聚合物的制备;3)复合相变材料的制备。本发明具有以下优点:1、解决相变过程中的泄漏问题;2、合成路线简单、无污染;3、具有良好的热储能特性和热稳定性;4、有效的改善了相变材料的导热率,导热率从0.2494 W/m.K提升到了0.5239 W/m.K,提高热量的利用率。

    一种二维碳化钛掺杂氢化铝钠储氢材料及其制备方法

    公开(公告)号:CN110436408A

    公开(公告)日:2019-11-12

    申请号:CN201910881054.6

    申请日:2019-09-18

    Abstract: 本发明公开了一种二维碳化钛掺杂氢化铝钠储氢材料,由氢化铝钠和二维碳化钛Ti2C混合机械球磨制得;所述的二维碳化钛Ti2C呈现二维片状堆叠结构。其制备方法包括:1)二维Ti2C制备;2)二维碳化钛掺杂氢化铝钠储氢材料的制备。作为储氢领域的应用,催化剂掺杂量为1 wt%时,体系放氢温度降至45℃,放氢量达到6.0 wt%;当催化剂掺杂量为9 wt%时,体系放氢温度降至92℃,放氢量达到5.4 wt%。本发明具有以下优点:1、有效地改善氢化铝钠的放氢性能,在温和条件下具有更高的储氢容量和放氢速率。初始放氢温度降至45℃,放氢量达到6.0 wt%;2、Ti2C作为催化剂与氢化铝钠储氢材料更为匹配;3、具有成本低廉、制备工艺简单、反应可控等优点。

    一种聚乙二醇接枝环氧树脂复合材料及其制备方法

    公开(公告)号:CN110144035A

    公开(公告)日:2019-08-20

    申请号:CN201910438319.5

    申请日:2019-05-24

    Abstract: 本发明公开了一种聚乙二醇接枝环氧树脂复合材料,以双酚A型环氧树脂(BAER)、聚乙二醇(PEG)、二苯基甲烷二异氰酸酯(MDI)为原料,先将MDI和PEG制备成PEG-MDI双嵌段共聚物,再将PEG-MDI双嵌段共聚物接枝到BAER中得到PEG-MDI-BAER三嵌段共聚物,经固化成型后得到聚乙二醇接枝环氧树脂复合材料。其制备包括以下步骤:步骤1,PEG-MDI双嵌段共聚物的制备;步骤2,PEG-MDI-BAER三嵌段共聚物的制备;步骤3,聚乙二醇接枝环氧树脂复合材料的制备。本发明具有以下优点:1、具有热稳定性高的恶唑烷酮五元杂环;2、实现固固相变;3、使得韧性增强。

    一种纳米导热增强的微胶囊复合相变储能材料及其制备方法

    公开(公告)号:CN106085368B

    公开(公告)日:2019-08-06

    申请号:CN201610456325.X

    申请日:2016-06-22

    Abstract: 本发明公开了一种纳米导热增强的微胶囊复合相变储能材料及其制备方法,其纳米导热增强材料为氮化硼(BN)、碳纳米管(CNT)或氧化石墨烯(GO)等高导热纳米颗粒的微胶囊芯材为有机相变储能材料。将相变储能材料、乳化剂、溶剂混合,按照本发明的制备方法制得基于BN、CNT或GO等纳米颗粒导热增强的微胶囊复合相变储能材料,其中加入的BN、CNT、GO均经过改性处理使其含有羟基基团。另外,可以根据实际需要在微胶囊的芯材中同时加入BN、CNT或GR等纳米导热增强颗粒。本发明制备的复合相变储能材料具有较大的相变焓、良好的热循环稳定性、优异的导热性等,其制备过程简单,结构稳定,包封率高,应用前景广阔。

    一种碳@CoO核壳结构复合材料及其制备方法和应用

    公开(公告)号:CN107958792B

    公开(公告)日:2019-06-28

    申请号:CN201711071728.3

    申请日:2017-11-03

    CPC classification number: Y02E60/13

    Abstract: 本发明公开了一种碳纳米管嵌入的氮掺杂的碳@CoO核壳结构复合材料,由碳酸钴和含氮高分子树脂混合,经一步碳化得到,具有碳纳米管嵌入的碳@CoO的核壳结构。其制备方法包括:1)三聚氰胺树脂的制备;2)碳酸钴‑三聚氰胺树脂粉末的制备;3)碳纳米管嵌入的氮掺杂的碳@CoO核壳结构复合材料的制备。作为超级电容器电极材料的应用,在‑0.3‑0.4V范围内充放电,在放电电流密度为1 A/g时,比电容可以达到800‑900 F/g。本发明采用一步碳化法,工艺简单;碳纳米管和氮掺杂的碳同时生成,提高了材料的导电性;CoO被包覆在碳材料里,提高了材料的导电性,阻止了CoO的腐蚀和充放电过程中的体积收缩,表现出优良的电化学特性和化学稳定性,可用超级电容器的电极材料。

    一种CoO-氮掺杂的多孔碳复合材料及其制备方法和应用

    公开(公告)号:CN107591250B

    公开(公告)日:2019-06-28

    申请号:CN201710817682.9

    申请日:2017-09-12

    CPC classification number: Y02E60/13

    Abstract: 本发明公开了CoO‑氮掺杂的多孔碳复合材料,由草酸钴和含氮高分子树脂新制脲醛树脂混合反应,得到草酸钴‑脲醛树脂前驱体,再进行高温煅烧制得。其制备方法包括以下步骤:1)新制脲醛树脂的制备,将甲醛和尿素加入三口瓶中配成溶液后反应得到新制脲醛树脂;2)草酸钴‑脲醛树脂粉末的制备,将新制脲醛树脂、草酸钴和水进行混合,搅拌、烘干、粉碎、研磨,得到草酸钴‑脲醛树脂粉末;3)CoO‑氮掺杂的多孔碳复合材料的制备,将草酸钴‑脲醛树脂粉末放煅烧即可。作为超级电容器电极材料的应用时,比电容可以达到1000⁓1200 F/g。因此,本发明得到的CoO‑氮掺杂的多孔碳复合材料,表现出优良的电化学特性,可用超级电容器的电极材料。

    一种氮掺杂的碳纳米片-Co3O4复合材料的制备方法及应用

    公开(公告)号:CN109859956A

    公开(公告)日:2019-06-07

    申请号:CN201811436497.6

    申请日:2018-11-28

    Abstract: 本发明公开了一种氮掺杂的碳纳米片-Co3O4复合材料的制备方法及应用,制备时在明胶溶液中加入三聚氰胺与乙酸钴,在室温中静置,再用液氮冷冻干燥,干燥后再研磨成粉末,将粉末放到管式炉中煅烧,再放到马弗炉中煅烧制得产品。本发明方法采用两步法将Co2+负载到明胶-三聚氰胺上并形成碳纳米片,具有方法简单,应用范围广和制造成本低等优点,而且得到了在水溶液中无法获得的片状纳米结构。所制备的氮掺杂的碳纳米片-Co3O4复合材料表现出优良的电化学特性,可用于超级电容器的电极材料。而且该方法适合大批量的生产,应用效果好。

    一种CoO掺杂的三维石墨烯以及制备方法和应用

    公开(公告)号:CN107958793B

    公开(公告)日:2019-05-21

    申请号:CN201711081621.7

    申请日:2017-11-07

    CPC classification number: Y02E60/13

    Abstract: 本发明公开了一种CoO掺杂的三维石墨烯,由固化柿子单宁吸附了Co离子后,再进行高温碳化后,得到,其中CoO纳米颗粒的直径为5‑10nm,采用Co离子作为催化剂及前驱体,一步碳化法制备。其制备方法包括以下步骤:1)固化柿子单宁粉末的制备;2)前驱体的制备;3)三维石墨烯的制备。作为超级电容器电极材料的应用,在0‑0.4V范围内充放电,在放电电流密度为1A/g时,比电容可以达到1000‑1200F/g。本发明采用一步碳化法,工艺简单;CoO纳米粒子和三维石墨烯同时生成,CoO纳米粒子高度分散在石墨烯载体上,阻止了其团聚,提高了材料的超级电容性能,在超级电容器材料领域具有广阔的应用前景。

    一种Co-Bi-B催化铝/水制氢材料及其制备方法

    公开(公告)号:CN106622259B

    公开(公告)日:2019-02-22

    申请号:CN201611175543.2

    申请日:2016-12-15

    Abstract: 本发明提供一种Co‑Bi‑B催化铝/水反应的制氢材料及其制备方法,该材料由铝粉与Co‑Bi‑B混合机械球磨而成;其中,Co‑Bi‑B是由CoCl2.6H2O和BiCl3溶解于溶剂后,加入NaBH4,通过化学还原法制得。其制备方法包括:1)Co‑Bi‑B的制备与干燥;2)铝粉和Co‑Bi‑B的称量与准备;3)铝粉和Co‑Bi‑B的制备。本发明具有以下优点:1、在中性溶液和室温的条件下,产氢量能达到1196mL/g(复合材料),产氢率达到97.7%;2、Co‑Bi‑B对铝/水制氢材料催化活性高,避免了铝被氧化的现象;3、成本低廉,便于携带,能够随时制氢供氢。因此,本发明具有广阔的应用前景。

    一种粒度均匀的锂电池正极材料NCM811的制备方法

    公开(公告)号:CN109360982A

    公开(公告)日:2019-02-19

    申请号:CN201811112306.0

    申请日:2018-09-25

    Abstract: 本发明公开了一种粒度均匀的锂电池正极材料NCM811的制备方法,该法利用间苯二酚、甲醛与金属乙酸盐在水热反应条件下形成凝胶;然后,冷冻干燥。实现金属离子均匀混合,从而合成结晶度高、I(003)/I(104)比值在1.55-1.76之间、粒度大小均匀分布在500-900 nm之间的锂离子电池正极材料LiNi0.8Co0.1Mn0.1O2。其制备方法包括以下步骤:1)前驱体的制备;2)正极材料LiNi0.8Co0.1Mn0.1O2的制备。本发明的优点为:采用凝胶化和煅烧的两步法,获得的正极材料的阳离子混排程度低;与高温固相法和共沉淀法相比,降低了煅烧条件,减少了杂相生成,降低了对合成气氛等苛刻条件和步骤,有效降低了能耗和成本,工艺简单,成本低廉,且电化学性能、循环稳定性、比容量性能优异,具有工业应用前景。

Patent Agency Ranking