-
公开(公告)号:CN114910833B
公开(公告)日:2025-04-15
申请号:CN202210431075.X
申请日:2022-04-22
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01R33/035 , G01R33/00
Abstract: 本发明公开了一种信号接收系统、方法、设备及存储介质,属于信息处理技术领域,该系统包括,超导量子干涉器件,用于在检测到电磁信号时生成第一电信号;信号处理电路,所述信号处理电路包括具有目标增益带宽积的目标电路单元;所述信号处理电路用于基于所述目标电路单元,将所述第一电信号放大为第二电信号;所述信号处理电路的信号处理摆率与所述目标增益带宽积相适配;信号分析模块,用于对所述第二电信号进行信号分析,基于信号分析结果确定舒曼共振信号,其有益效果是能够稳定地检测到舒曼共振信号,提高测试结果的性噪比,检测简便。
-
公开(公告)号:CN114578271B
公开(公告)日:2025-03-25
申请号:CN202011391166.2
申请日:2020-12-01
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01R33/035 , G01R33/02 , G01R35/00
Abstract: 本发明提供一种磁场稳定系统及稳定磁场的方法,包括:三轴磁强计,探测水平方向的地球磁场;读出模块,读出三轴磁强计检测到的两路信号;总场探测模块,探测地球磁场的总场;比较模块,将总场探测模块输出的频率信号与一参考信号进行比较;反馈模块,将三轴磁强计及总场探测模块检测到的信号反馈到相应的三轴补偿线圈中;三轴补偿线圈,基于三轴磁强计补偿地球磁场的水平方向的磁场,基于总场探测模块补偿所述地球磁场的竖直方向的磁场,以形成总场稳场。本发明使用总场探测模块及三轴磁强计进行总场‑矢量联合稳场,可以获得更加优越的磁场稳定效果。
-
公开(公告)号:CN110118948B
公开(公告)日:2021-12-21
申请号:CN201910481742.3
申请日:2019-06-04
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01R33/035
Abstract: 本发明提供一种基于超导量子干涉仪的总场测量方法及装置,所述方法包括:对高灵敏度三轴SQUID磁强计进行非正交度、灵敏度和零点偏移的标定;通过高灵敏度三轴SQUID磁强计对待测环境中的磁场分量进行测量,并在磁场分量值大于预设阈值时对相应高灵敏度SQUID进行复位后再重新锁定工作点;同时利用相应低灵敏度SQUID收集高灵敏度SQUID在死区时间内发生的磁通变化以获取磁通量子跳跃数,并以此对死区时间内高灵敏度SQUID测得的磁场分量值进行补偿,以获取准确磁场分量值;基于准确磁场分量值进行总场合成,以获取待测环境中的总场。通过本发明解决了现有技术中使用三轴矢量磁通门进行总场测量时探测精度较低的问题。
-
公开(公告)号:CN110596619B
公开(公告)日:2021-07-09
申请号:CN201910872188.1
申请日:2019-09-16
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01R33/022
Abstract: 本发明提供一种全张量磁梯度测量组件及其优化方法,所述测量组件包括:容器杜瓦,包括杜瓦瓶体及设于杜瓦瓶体内部的安装插塞,所述安装插塞固定于所述杜瓦瓶体顶部并向下延伸;平面梯度计组件,安装于安装插塞的下方,包括平面梯度计安装件及安装于所述平面梯度计安装件上的平面梯度计;磁强计组件,安装于所述安装插塞的下方,包括磁强计安装件及安装于所述磁强计安装件上的三轴磁强计;其中将各所述平面梯度计等效成立方体,并以各立方体的长、宽、高作为三维空间的三个正交轴,从而形成多个参考坐标系;此时各所述平面梯度计在其各自参考坐标系的三个正交轴方向上的不平衡度与磁场分量变化值的绝对值基于数值大小反序对应。
-
公开(公告)号:CN111077595B
公开(公告)日:2021-05-25
申请号:CN201911274147.9
申请日:2019-12-12
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种超导磁测系统角度误差的校正方法及存储介质,采用一套磁测装置来确定全张量磁梯度测量组件与组合惯导之间的角度安装误差,所述方法包括:利用总场探测器获取外界磁场总场;根据所述外界磁场总场,对三轴磁强计磁场进行校正,获得校正后的三轴磁强计的磁场分量信息;将所述三轴磁强计的磁场分量信息与地球磁场模型信息进行对比,获得三轴磁强计的磁场姿态信息;将组合惯导获取的姿态信息与所述三轴磁强计的磁场姿态信息进行对比,即可获得两组姿态间的目标安装误差;根据所述目标安装误差值进行角度安装误差的校正。本校正方法简单、精准度高,特别适合在实际的超导磁测量领域中应用。
-
公开(公告)号:CN111413651B
公开(公告)日:2021-04-13
申请号:CN202010235929.8
申请日:2020-03-30
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01R33/032 , G01R33/025
Abstract: 本申请公开了一种磁场总场的补偿方法、装置、系统及存储介质,通过超导三轴磁强计获取磁场在坐标系下的分量值,通过光泵传感器获取磁场的光泵总场值,对分量值进行校正,得到校正后的分量值。利用磁干扰补偿模型、校正后的分量值和光泵总场值得到方向余弦特征矩阵,通过惯导传感器获取姿态信息,基于姿态信息确定姿态特征矩阵,对方向余弦特征矩阵,姿态特征矩阵进行滤波处理,得到滤波后的方向余弦特征矩阵和滤波后的姿态特征矩阵。将滤波后的方向余弦特征矩阵和滤波后的姿态特征矩阵输入已训练好的磁场补偿模型,得到补偿的磁干扰值,根据光泵总场值和补偿的磁干扰值得到目标磁场总场值。如此,可以得到精度更高的磁场总场值。
-
公开(公告)号:CN110596619A
公开(公告)日:2019-12-20
申请号:CN201910872188.1
申请日:2019-09-16
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01R33/022
Abstract: 本发明提供一种全张量磁梯度测量组件及其优化方法,所述测量组件包括:容器杜瓦,包括杜瓦瓶体及设于杜瓦瓶体内部的安装插塞,所述安装插塞固定于所述杜瓦瓶体顶部并向下延伸;平面梯度计组件,安装于安装插塞的下方,包括平面梯度计安装件及安装于所述平面梯度计安装件上的平面梯度计;磁强计组件,安装于所述安装插塞的下方,包括磁强计安装件及安装于所述磁强计安装件上的三轴磁强计;其中将各所述平面梯度计等效成立方体,并以各立方体的长、宽、高作为三维空间的三个正交轴,从而形成多个参考坐标系;此时各所述平面梯度计在其各自参考坐标系的三个正交轴方向上的不平衡度与磁场分量变化值的绝对值基于数值大小反序对应。
-
公开(公告)号:CN110109032A
公开(公告)日:2019-08-09
申请号:CN201910371859.6
申请日:2019-05-06
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01R33/035 , G01R33/00 , G05D16/20
Abstract: 本发明提供一种超导航磁气压稳压装置及方法,所述装置包括:设于容器杜瓦出气管道上的气压检测模块,用于检测容器杜瓦内的气压;电连接于气压检测模块的控制模块,用于比较检测气压值和预设气压值,并根据比较结果分别输出第一、第二、第三控制信号;设于容器杜瓦的出气管道上、且位于气压检测模块的上方,同时电连接于控制模块的气压调节模块,用于根据第一控制信号控制出气管道的开/关时间以减小容器杜瓦内的气压;或根据第二控制信号控制出气管道的开/关时间以维持容器杜瓦内的气压;或根据第三控制信号控制出气管道关闭以增加容器杜瓦内的气压,从而实现容器杜瓦内的气压稳定。通过本发明解决了现有因气压变化而引入测量误差的问题。
-
公开(公告)号:CN110068870A
公开(公告)日:2019-07-30
申请号:CN201910349278.2
申请日:2019-04-28
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01V3/10
Abstract: 本发明提供一种超导瞬变电磁信号的测量装置及方法,所述测量装置包括:TEM发射机、电连接于所述TEM发射机的TEM发射线圈、设于所述TEM发射线圈内的TEM接收机、设于所述TEM发射线圈外且与所述TEM接收机之间具有预设间距的三轴超导磁强计、电连接于所述三轴超导磁强计的数据采集组件及与所述TEM接收机和所述数据采集组件进行数据通信的数据处理组件。通过本发明解决了现有二次涡流场的测量过程中存在干扰信号,从而导致二次涡流场的测量不准确的问题。
-
公开(公告)号:CN107132587B
公开(公告)日:2019-03-05
申请号:CN201710220804.6
申请日:2017-04-06
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01V13/00
Abstract: 本发明提供一种航空超导全张量磁梯度测量系统安装误差标定装置及方法,用于标定航空超导全张量磁梯度测量系统的全张量测量子系统中的组合惯导与全张量磁梯度测量组件之间的安装误差,其中,所述标定装置包括亥姆赫兹线圈、设置在所述亥姆赫兹线圈的磁梯度均匀区以承载所述全张量测量子系统的无磁三轴转台、以及设置在所述亥姆赫兹线圈的基座上的测向装置。本发明可以在实现航空超导全张量磁梯度测量系统安装误差标定的同时,很方便地通过间接测量的方式获得直接测量无法获得的标定精度,从而有效地保障了航空超导全张量磁梯度测量系统的系统测量精度。此外,按本发明构建的标定实现简单、操作简便,非常适合在超导航磁测量领域中应用。
-
-
-
-
-
-
-
-
-