-
公开(公告)号:CN116543850A
公开(公告)日:2023-08-04
申请号:CN202310494073.X
申请日:2023-05-05
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种调控过渡金属二硼化物硼缺陷形成能的第一性原理计算方法,包括:1)选择九种3d过渡金属所对应的过渡金属二硼化物作为样本进行模型构建;2)设置模型相关的参数;3)对存在一个硼原子缺陷的过渡金属二硼化物模型进行优化的计算;4)计算9种3d过渡金属二硼化物的硼缺陷形成能;5)对硼原子进行替位掺杂;6)对存在一个硼原子缺陷的掺杂卤素原子后的过渡金属二硼化物模型优化的计算;7)计算掺杂卤素原子后的过渡金属二硼化物所对应的硼缺陷能。依据这种方法能降低硼原子脱出的反应条件,从而改善过渡金属参与的金属硼氢化物分解脱氢‑再氢化反应中的可逆性能。
-
公开(公告)号:CN116386752A
公开(公告)日:2023-07-04
申请号:CN202310412290.X
申请日:2023-04-18
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种预测过渡金属对硼氢化物催化强度的方法,包括:构建的金属模型以及BH4基团的模型、设置模型相关的参数,对构建好的模型进行结构优化的计算、得出9种过渡金属表面的功函数(Wf)作为过渡金属固有性质指标、标记不同4d过渡金属对BH4的催化强度、采用数据分析法得到预测催化强度。这种方法能实现高效的预测和选择合适的硼氢化物金属催化剂,降低预测成本、实用性好,为过渡金属对硼氢化物催化性能提供了新的见解。
-
公开(公告)号:CN111662688B
公开(公告)日:2022-02-08
申请号:CN202010616069.2
申请日:2020-07-01
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种氮化硼/石墨烯双导热基气凝胶复合相变材料,由改性氮化硼/石墨烯气凝胶和正十八烷采用真空浸渍法复合而成。双导热气凝胶是以氧化石墨烯、改性氮化硼、聚乙烯吡咯烷酮和乙二胺为原料制备氮化硼/石墨烯水凝胶经冷冻干燥后,再恒温煅烧制得;聚乙烯吡咯烷酮作为交联剂,乙二胺作为还原剂。其制备方法包括以下步骤:1)改性氮化硼的制备;2)氮化硼/石墨烯双导热基气凝胶的制备;3)氮化硼/石墨烯双导热基气凝胶复合相变材料的制备。作为相变材料的应用,导热系数为0.9‑1.6W/(m·K);相变温度为19‑32℃,相变潜热为200‑220J/g。本发明具有以下优点:1、导热系数提高738%;2、有效解决相变过程中的泄露问题;3、高相变潜热和热稳定性能。
-
公开(公告)号:CN113546656A
公开(公告)日:2021-10-26
申请号:CN202110964849.0
申请日:2021-08-23
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种MXene负载Ni@C纳米颗粒储氢催化剂,以Ni‑MOFs为基础碳化制备Ni@C后,再负载到MXene上制得,简称为Ni@C‑MXene;所述Ni‑MOFs由六水合硝酸镍、对苯二甲酸水热反应制得;所述MXene为Ti3C2,由Ti3AlC2和浓盐酸加氟化锂反应制得。其制备方法包括以下步骤:1)Ni@C的制备;2)MXene的制备;3)Ni@C‑MXene的制备。作为储氢材料催化剂的应用,将MXene负载Ni@C纳米颗粒储氢催化剂与和氢化铝锂满足一定的质量之比,在一定条件下进行球磨,即可得到Ni@C‑MXene掺杂氢化铝锂储氢材料;当MXene负载Ni@C纳米颗粒储氢催化剂掺杂量为7 wt%时,体系放氢温度降至56.1℃,放氢量达到6.52 wt%。本发明的储氢材料具有优异的储放氢性能,制得的MXene负载MOF衍生Ni纳米颗粒能显著改善氢化铝锂的放氢性能,使得其在较低温度下表现出优异的放氢性能。
-
公开(公告)号:CN110628033B
公开(公告)日:2021-08-31
申请号:CN201911068272.4
申请日:2019-11-05
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种聚酰亚胺接枝聚乙二醇复合固‑固相变材料,主要成分包括聚乙二醇,聚酰亚胺和氧化石墨烯,通过聚乙二醇与聚酰亚胺前驱体和氧化石墨烯分子间官能团和氢键的相互作用,形成了相互交联的网络结构,再经惰性气氛高温条件下聚酰亚胺前驱体的进一步热交联,形成了稳定的相互交联的骨架结构,本发明材料具有交联多孔的层状结构。其制备方法包括以下步骤:1)氧化石墨烯改性聚酰亚胺前驱体的混合溶液的制备;2)层状交联多孔结构复合固‑固相变材料的制备。
-
公开(公告)号:CN111187599B
公开(公告)日:2021-03-23
申请号:CN202010114256.0
申请日:2020-02-25
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种三维碱式氧化锰纳米棒泡沫复合相变材料,由三维碱式氧化锰纳米棒泡沫和聚乙二醇采用真空浸渍法复合而成,所述三维碱式氧化锰纳米棒泡沫是以四水合氯化锰、氢氧化钠和高锰酸钾为原料,制备成碱式氧化锰纳米棒水凝胶后,经冷冻干燥制得。三维碱式氧化锰纳米棒泡沫的微观形貌为平均直径范围为150nm‑260nm的碱式氧化锰纳米棒堆叠而成的三维孔道结构;聚乙二醇具有分子长链结构,与碱式氧化锰纳米棒发生缠绕,形成稳定的结构。所得复合相变材料的光热转换效率为89%‑98%,相变温度为39‑60℃,相变潜热为122‑163J/g。本发明具有以下优点:1、光热转换效率最高达到98%;2、有效解决相变过程中的泄露问题;3、高相变潜热和热稳定性能;4、成本低廉。
-
公开(公告)号:CN112408317A
公开(公告)日:2021-02-26
申请号:CN202011374925.4
申请日:2020-12-01
Applicant: 桂林电子科技大学
IPC: C01B3/00 , C01G23/053 , C01B32/05 , C01B6/24
Abstract: 本发明公开了碳负载二氧化钛掺杂氢化铝锂储氢材料,由氢化铝锂和原位生成的碳负载二氧化钛TiO2@C混合机械球磨制得。所述碳负载二氧化钛TiO2@C的微观形貌为直径1μm的三维花状,由钛酸丁酯在丙三醇和乙醇混合溶液中加热反应生成的沉淀煅烧后制得;碳负载二氧化钛TiO2@C的添加量占总质量的2‑8 wt%。其制备方法包括:1)原位生成的碳负载二氧化钛制备;2)碳负载二氧化钛掺杂氢化铝锂储氢材料的制备。作为储氢领域的应用,催化剂掺杂量为2‑6 wt%时,体系放氢温度降至57‑69℃,放氢量达到7.12‑7.36 wt%。本发明具有以下优点:1、原位生成的碳负载二氧化钛有效地降低氢化铝锂的放氢温度,具有高的最终放氢量;2、具有成本低廉、制备工艺简单、反应可控和易于大规模制备。
-
公开(公告)号:CN110436408A
公开(公告)日:2019-11-12
申请号:CN201910881054.6
申请日:2019-09-18
Applicant: 桂林电子科技大学
IPC: C01B3/00 , C01B32/921 , C01B6/24
Abstract: 本发明公开了一种二维碳化钛掺杂氢化铝钠储氢材料,由氢化铝钠和二维碳化钛Ti2C混合机械球磨制得;所述的二维碳化钛Ti2C呈现二维片状堆叠结构。其制备方法包括:1)二维Ti2C制备;2)二维碳化钛掺杂氢化铝钠储氢材料的制备。作为储氢领域的应用,催化剂掺杂量为1 wt%时,体系放氢温度降至45℃,放氢量达到6.0 wt%;当催化剂掺杂量为9 wt%时,体系放氢温度降至92℃,放氢量达到5.4 wt%。本发明具有以下优点:1、有效地改善氢化铝钠的放氢性能,在温和条件下具有更高的储氢容量和放氢速率。初始放氢温度降至45℃,放氢量达到6.0 wt%;2、Ti2C作为催化剂与氢化铝钠储氢材料更为匹配;3、具有成本低廉、制备工艺简单、反应可控等优点。
-
公开(公告)号:CN106085368B
公开(公告)日:2019-08-06
申请号:CN201610456325.X
申请日:2016-06-22
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种纳米导热增强的微胶囊复合相变储能材料及其制备方法,其纳米导热增强材料为氮化硼(BN)、碳纳米管(CNT)或氧化石墨烯(GO)等高导热纳米颗粒的微胶囊芯材为有机相变储能材料。将相变储能材料、乳化剂、溶剂混合,按照本发明的制备方法制得基于BN、CNT或GO等纳米颗粒导热增强的微胶囊复合相变储能材料,其中加入的BN、CNT、GO均经过改性处理使其含有羟基基团。另外,可以根据实际需要在微胶囊的芯材中同时加入BN、CNT或GR等纳米导热增强颗粒。本发明制备的复合相变储能材料具有较大的相变焓、良好的热循环稳定性、优异的导热性等,其制备过程简单,结构稳定,包封率高,应用前景广阔。
-
公开(公告)号:CN109052403A
公开(公告)日:2018-12-21
申请号:CN201811095356.2
申请日:2018-09-19
Applicant: 桂林电子科技大学
IPC: C01B32/921 , C01B6/24 , C01B3/00
CPC classification number: C01B32/921 , C01B3/0084 , C01B6/243 , C01P2002/72 , C01P2004/03 , C01P2004/20
Abstract: 本发明公开了一种二维碳化钛掺杂氢化铝锂储氢材料,由氢化铝锂和二维碳化钛Ti3C2混合机械球磨制得,二维碳化钛Ti3C2由Ti3AlC2和氢氟酸反应制得。其制备方法包括:步骤1,二维Ti3C2的制备和步骤2,二维碳化钛掺杂氢化铝锂储氢材料制备。本发明的储氢材料在二维Ti3C2催化作用下,初始脱氢温度为43‑68℃,比纯氢化铝锂降低了129‑154℃,其总放氢量达到4.6‑7.2 wt%,其初始脱氢温度比原氢化铝锂降低了148.2℃;在150℃时,15分钟能放出3.7 wt%氢气;在200℃时,15分钟能放出5.3 wt%氢气。因此,本发明的储氢材料具有优异的储放氢性能,制得的二维Ti3C2能显著改善氢化铝锂的放氢性能,使得其在较低温度下表现出优异的放氢性能。
-
-
-
-
-
-
-
-
-