-
公开(公告)号:CN107389688B
公开(公告)日:2020-05-12
申请号:CN201710600243.2
申请日:2017-07-21
Applicant: 中国工程物理研究院激光聚变研究中心 , 哈尔滨工业大学
IPC: G01N21/88 , G01N21/95 , G01S11/12 , B23K26/00 , B23K26/354
Abstract: 本发明公开了一种大口径熔石英光学元件表面微缺陷多工位集成修复方法,将紫外激光预处理系统、显微检测系统和二氧化碳激光修复系统集中安装在多自由度熔石英光学元件定位平台上,实现三工位集成。对熔石英光学元件安装定位后,采用紫外激光光斑对光学元件表面进行全口径逐行往复式扫描预处理;然后利用显微检测系统对熔石英光学元件表面微缺陷进行全口径暗场扫描检测;最后选定需要修复的微缺陷兴趣点,通过CO2红外激光系统对光学元件表面微缺陷进行局部单点融熔修复,从而完成熔石英光学元件表面微缺陷的多工位集成修复,该工艺方法实现多工位集成,节约了各个工位的装夹时间至少150分钟,提高了微缺陷修复的效率。
-
公开(公告)号:CN110389090A
公开(公告)日:2019-10-29
申请号:CN201910722708.0
申请日:2019-08-06
Applicant: 哈尔滨工业大学
IPC: G01N15/02
Abstract: 一种大口径反射镜表面颗粒污染物亚像素尺寸标定方法,本发明的目的是为了解决现有像素级尺寸标定方法精度低的问题。过程为:一、将整个通光域均分为4×4个子区域,制备与子区域尺寸相同的标定板,并在标定板上预置不同尺寸的二氧化硅颗粒;二、将标定板依次放置在反射镜表面均匀分割的不同的子区域上,并分别采集不同区域的标定板图片;三、得到颗粒污染物在图像中的位置坐标、像素面积、像素直径、总灰度信息;四、在超景深显微镜下测量颗粒污染物的实际直径和实际面积;五、训练污染物面积、直径标定模型,由训练好的污染物面积、直径标定模型对测试样本进行估计。本发明用于表面颗粒污染物亚像素尺寸标定领域。
-
公开(公告)号:CN110389088A
公开(公告)日:2019-10-29
申请号:CN201910722035.9
申请日:2019-08-06
Applicant: 哈尔滨工业大学
Abstract: 一种大口径反射镜表面颗粒污染物在线监测方法,涉及工程光学技术领域。本发明是为了解决现有暗场检测方法,由于污染物具有尺寸小、数量少导致自动聚焦算法受图像背景影响,未综合考虑镜头制造误差与成像系统安装误差引起的成像畸变,由于图像背景复杂,污染物提取算法易造成漏检与误检的问题。本发明使光源发出的光以低角度双侧扫掠式辐照于反射镜表面,实现反射镜表面全口径辐照;使成像系统的焦面聚焦在反射镜表面,调整成像系统的曝光时间,实现目标点颗粒污染物和背景的分离,然后采集反射镜表面的图像;对采集到的图像进行畸变矫正、并去除矫正后图像中的背景光,然后对图像进行二值化处理,获得图像中的颗粒污染物信息。
-
公开(公告)号:CN108732185A
公开(公告)日:2018-11-02
申请号:CN201810554052.1
申请日:2018-05-31
Applicant: 哈尔滨工业大学
IPC: G01N21/88 , G01N21/958 , B23K26/70
Abstract: 本发明提供一种非球面光学元件表面紫外预处理轨迹的规划方法,属于工程光学技术领域。本发明首先以非球面光学元件非球面的顶点为原点、以回转曲线旋转轴为Z轴、以非球面光学元件侧边平行方向为Y轴、以非球面光学元件出光面平行方向为X轴建立加工坐标系,并得到入光面的非球面方程,设置紫外激光预处理过程的加工参数,所述加工参数包括光斑大小、加工速度以及光斑重叠率;然后分别计算X、Y和Z轴的补偿函数;最后根据得到的补偿函数计算扫描设备的运动函数。本发明解决了现有紫外预处理技术出光面光斑的大小不恒定,导致紫外预处理效果差的问题。本发明可用于紫外激光预处理非球面光学元件,暴露亚表层缺陷。
-
公开(公告)号:CN105127591B
公开(公告)日:2017-03-29
申请号:CN201510556900.9
申请日:2015-09-02
Applicant: 哈尔滨工业大学
IPC: G01N33/00 , B23K26/08 , B23K26/352 , G01N21/01
Abstract: 大口径曲面光学元件表面微缺陷修复用垂直放置二维大行程快速移动装置,涉及一种二维大行程快速移动装置。解决了现有光学元件进行激光修复过程中二维大行程快速移动装置三工位的移动速度慢和多次装夹带来的安装误差等问题。X轴伺服电机带动X轴移动导轨在X轴方向直线移动,承重板固定在导轨滑台上,两根立柱和龙门横板构成龙门架结构,两块龙门竖板、龙门肋板和龙门横板围成密闭结构;两根Y轴运动导轨分别固定在两根立柱的内侧,Y轴伺服电机带动其中一根Y轴运动导轨上下移动,承载框体的左右两个边框均固定在两根Y轴运动导轨的导轨滑台上。本发明适用于大口径曲面光学元件表面微缺陷修复使用。
-
公开(公告)号:CN105181600A
公开(公告)日:2015-12-23
申请号:CN201510556896.6
申请日:2015-09-02
Applicant: 哈尔滨工业大学
Abstract: 一种大口径曲面光学元件表面微缺陷的检测与激光修复装置,涉及一种光学元件表面微缺陷的检测与激光修复装置。解决了对大口径融石英光学元件的微缺陷检测速度慢和定位精确度底的问题。本发明的可微调显微检测单元、二维大行程快速移动装置、Z轴运动装置和激光组件均设置在承载台上,承载台的上表面沿X轴方向设有凹槽,二维大行程快速移动装置设置在承载台凹槽内,可微调显微检测单元和激光组件均设置于Z轴运动装置的平台上,其轴线方向均垂直于二维大行程快速移动装置的侧面。本发明适用于大口径曲面光学元件表面微缺陷的检测与激光修复使用。
-
公开(公告)号:CN115169198B
公开(公告)日:2025-04-29
申请号:CN202210905554.0
申请日:2022-07-29
Applicant: 哈尔滨工业大学
IPC: G06F30/23 , G16C60/00 , G06F111/04 , G06F113/26 , G06F119/14
Abstract: 本发明提供了一种基于ABAQUS的各向异性KDP功能晶体材料微铣削加工过程的三维仿真方法,属于光学元件计算机辅助设计与加工技术领域。为解决现有的仿真方法无法从三个维度精确预测各向异性KDP材料微铣削加工过程的问题。包括:步骤一、构建加工过程的三维装配模型;步骤二、设置分析步时间总长和半自动质量缩放以及设置输出变量;步骤三、构建工件的各向异性本构模型;步骤四、对铣刀和KDP晶体元件分别进行网格划分;步骤五、模拟铣刀与元件的接触状态;步骤六、约束模型自由度并设置加工工艺参数;步骤七、对模型进行求解,重复步骤二至七的操作,至仿真结果收敛;步骤八、输出仿真结果。本发明方法能够全方位精确描述向异性KDP晶体材料微铣削加工过程。
-
公开(公告)号:CN118447201A
公开(公告)日:2024-08-06
申请号:CN202410534147.2
申请日:2024-04-30
Applicant: 哈尔滨工业大学
Abstract: 本发明一种用于KDP晶体DPN水溶修复形貌演变模拟的表面微纳缺陷三维形貌演变模拟方法,涉及微纳制造领域,为解决现有方法无法将KDP元件表面微纳缺陷三维形貌转化为DPN水溶修复形貌演变模拟模型初始值进行微纳缺陷三维形貌演变模拟的问题。包括:步骤一、采集KDP光学元件表面微纳缺陷三维云图;步骤二、对三维云图进行预处理,转换导出为一维数组;步骤三、对一维数组进行零点偏移和归一化缩放;步骤四、对一维数组进行二维像素矩阵映射变换;步骤五、重写为灰度图像后导入模拟模型,对每个二维像素点进行坐标映射;步骤六、进行反演变换实现三维云图的重建;步骤七、进行初始化并求解,得到以缺陷实际形貌为初始值的DPN水溶修复形貌演变过程。
-
公开(公告)号:CN118445941A
公开(公告)日:2024-08-06
申请号:CN202410534143.4
申请日:2024-04-30
Applicant: 哈尔滨工业大学
IPC: G06F30/17 , G06F30/28 , G16C10/00 , G16C60/00 , G06F119/08 , G06F111/14 , G06F111/04 , G06F119/14
Abstract: 本发明提供一种基于动网格‑流体‑相场耦合的DPN纳米级水半月板动态特性模拟方法,涉及微纳制造技术领域,为解决现有方法的模型空间和时间尺度小,未考虑空气和水的材料属性以及AFM探针的运动参数等因素,以及AFM探针仅能沿垂直于基体表面方向移动等问题。包括:步骤一、构建水半月板全范围计算模型,求解DPN水半月动态特性分析初始条件;步骤二、构建DPN水半月板动态特性分析几何模型;步骤三、对几何模型进行收敛性增强处理,保证网格质量;步骤四、设定分析模型初始值,赋边界条件,对模型进行静态弛豫处理;步骤五、将几何模型划分为指定运动域和自由变形域,设定AFM探针运动参数和动网格边界条件,对模型进行瞬态求解,获得DPN水半月板动态特性。
-
公开(公告)号:CN114675611B
公开(公告)日:2024-07-19
申请号:CN202210366496.9
申请日:2022-04-08
Applicant: 哈尔滨工业大学
IPC: G05B19/418
Abstract: 一种针对悬臂梁状弱刚度微车刀外圆车槽的车削工艺参数优化方法,涉及超精密弱刚度微槽车削领域,为解决现有技术中没有针对悬臂梁状弱刚度微车刀挠度变形引起的加工误差进行优化的问题。具体过程为:步骤一、分析出影响刀具挠度变形的切削力分量,建立该切削力分量的函数模型;步骤二、根据切削力分量函数模型建立挠度变形的函数模型;步骤三、根据挠度变形函数模型建立实际进给距离的函数模型;步骤四、根据实际进给距离函数模型代入挠度变形的函数模型中进行循环计算,求得最终实际进给距离的函数模型;步骤五、根据最终实际进给距离的函数模型,建立槽深误差的函数模型,通过分析各参数对槽深误差的影响规律对各参数进行优选。
-
-
-
-
-
-
-
-
-