一种基于卷积神经网络的无人机监控方法及系统

    公开(公告)号:CN110262529A

    公开(公告)日:2019-09-20

    申请号:CN201910510327.6

    申请日:2019-06-13

    Abstract: 本发明提出一种基于卷积神经网络的无人机监控方法,包括:采集视频序列,将所述视频序列输到图像处理器中;对采集的视频数据进行预处理,并通过链队列将预处理后的视频数据进行缓存;通过提前预训练好的卷积神经网络模型对链队列中存取的视频数据进行分析,分析后的输出结果为无人机的空间坐标,并将无人机空间坐标下发到监控终端;读取无人机的空间坐标,对所述空间坐标进行分析,计算出舵机转动量,将所述舵机转动量发送到舵机中,控制舵机转动。本发明将卷积神经网络模型应用于无人机监控,并采用多线程链队列等技术进一步优化性能。

    一种滑坡形变预测方法
    82.
    发明公开

    公开(公告)号:CN110059392A

    公开(公告)日:2019-07-26

    申请号:CN201910289303.2

    申请日:2019-04-11

    Abstract: 本发明公开了一种滑坡形变预测方法,获取滑坡体累积位移量原始数据,得到累积位移量原始数据序列;对所述累积位移量原始数据序列进行预处理;将预处理后的累积位移量原始数据序列输入粒子群优化灰色Verhulst模型,得到累积位移量初始预测数据序列;计算累积位移量初始预测数据的残差,得到初始预测数据残差序列;马尔可夫链修正所述初始预测数据残差序列,根据修正后的初始预测数据残差序列计算得到最终预测数据序列。本发明使用的灰色Verhulst模型相比于原始的灰色Verhulst模型进行了改进,采用粒子群算法对灰色Verhulst模型的参数值进行优化,利用滑动窗对原始数据序列进行动态更新,使用马尔可夫链修正模型的残差,模型预测精度有较大提高。

    伪卫星发射端及其载波相位同步的方法

    公开(公告)号:CN109600708A

    公开(公告)日:2019-04-09

    申请号:CN201811418774.0

    申请日:2018-11-26

    Abstract: 本发明公开了一种伪卫星发射端载波相位同步的方法,包括生成至少四路中频信号并经处理产生至少四路射频信号;获取各路射频信号并经处理重新得到相应的各路中频信号;对各路中频信号进行捕获、跟踪解算后得到各路载波相位值;将作为比较信号的各路信号的载波相位值分别与作为基准信号的一路信号的载波相位值做差计算得到至少三个载波相位差值;将各载波相位差值补偿到相应一路信号前一时刻的载波相位值作为相位输入值根据特定算法产生具有新的载波相位的载波;在当前时刻分别用相应具有新的初始相位值的载波对相应基带信号进行调制生成新的中频信号。本发明还公开了一种伪卫星发射端。能够实现发射端各路信号载波相位的同步,有利于提高定位精度。

    一种基于复合拦截策略的无人机防控智能决策方法

    公开(公告)号:CN109597433A

    公开(公告)日:2019-04-09

    申请号:CN201811534309.3

    申请日:2018-12-14

    Abstract: 本发明公开一种基于复合拦截策略的无人机防控智能决策方法,1)当全向阵列天线被动截获、接收到无人机及操作者发射的遥控和图像传输射频信号时,无人机频谱探测系统根据信号解算出无人机速度、方向的定位信息;2)将无人机定位信息或者用户自定义的场景作传输至机器逻辑控制系统,控制系统通过数学模型建立输入到输出之间的联系,控制系统根据输入信息和传输函数计算得输出结果,决策拦截方案对黑飞无人机拦截;3)根据拦截方案,复合拦截系统结合基础拦截手段,对黑飞无人机的拦截和防控;4)将无人机的拦截信息反馈至机器强化学习系统中,通过机器强化学习系统不断优化机器逻辑控制系统的数学算法模型,改进和完善机器逻辑控制系统的决策。

    一种鲁棒多用户检测器设计方法

    公开(公告)号:CN109150237A

    公开(公告)日:2019-01-04

    申请号:CN201810928361.0

    申请日:2018-08-15

    CPC classification number: H04B1/7105 G06N3/006

    Abstract: 本发明涉及一种鲁棒多用户检测器设计方法,解决的是冲击噪声信道环境下传统多用户检测器误码率大的技术问题,通过初始化算法参数;使用对立学习法初始化父代种群,确定父代种群中的三狼;使用改进的灰狼算法位置更新方程更新父代种群,并将种群个体按照适应度值从大到小进行排序;利用父代种群产生子代交叉变异体,当子代变异体适应度值优于父代种群时,将所述子代变异个体的进化方向以及成功交叉变异概率信息进行位置信息作差,得到新的进化方向信息并保存,同时更新三狼位置;采用Huber理论并利用残差的非快增函数对冲击噪声信道下多用户检测器进行设计的技术方案,较好的解决了该问题,可用于多用户检测器设计中。

    一种基于压缩感知的超宽带信道估计算法

    公开(公告)号:CN109088834A

    公开(公告)日:2018-12-25

    申请号:CN201810755500.4

    申请日:2018-07-11

    Abstract: 本发明涉及一种基于压缩感知的超宽带信道估计算法,解决的是现在以先验信道稀疏度为前提的重构算法的估计性能问题的技术问题,通过采用包括:步骤一,建立UWB信道估计模型;步骤二,使用欠采样方法采样并利用测量矩阵对欠采样数据观测,得到观测向量;步骤三,使用自适应稀疏度子空间追踪算法和测量矩阵对超宽带信道进行重构,完成超宽带信道估计的技术方案,较好的解决了该问题,可用于超宽带信道估计中。

    一种自适应卫星导航授时方法及装置

    公开(公告)号:CN108089431A

    公开(公告)日:2018-05-29

    申请号:CN201810068313.9

    申请日:2018-01-24

    Abstract: 本发明提供一种自适应卫星导航授时方法及装置,该授时装置包括:基带信号处理模块,用于获取各个通道的观测量信息;最小二乘定位解算模块,以各个通道的观测量信息为输入量,并利用最小二乘进行定位解算,得到用户位置、用户速度和本地接收机钟差;自适应调整模块,以本地接收机钟差为输入,通过运算及判决,实现RTC模块中的频率字修正量的自适应调整;RTC模块,利用自适应调整模块所输出频率字修正量对频率字进行修正。本发明采用自适应的方式对本地接收机时钟进行调节,可有效的解决本地接收机时钟过度调节或者欠调节的问题,极大的提高授时精度,并且方法清晰易实现,无需增加卫星导航接收机任何硬件成本。

    卫星导航接收机及其抗远近效应的方法和室内定位方法

    公开(公告)号:CN106597492A

    公开(公告)日:2017-04-26

    申请号:CN201710066955.0

    申请日:2017-02-06

    CPC classification number: G01S19/29 G01S19/30

    Abstract: 本发明适用于卫星导航领域,尤其涉及一种卫星导航接收机及其抗远近效应的方法和室内定位方法。卫星导航接收机包括依次相连的天线单元、射频单元、基带信号处理单元、控制与信息处理单元和人机交互单元,所述基带信号处理单元具有远近效应抑制单元,所述远近效应抑制单元包括信号重构模块、弱卫星信号跟踪模块和至少一个强卫星信号跟踪模块,强卫星信号跟踪模块包括第一自相关模块、第一互相关模块、第一减法器和第二减法器,弱卫星信号跟踪模块包括第二自相关模块、第二互相关模块、第三减法器和第四减法器。本发明能增强卫星导航接收机的抗远近效应能力。

    一种可编程DDS任意波形信号发生器

    公开(公告)号:CN106444963A

    公开(公告)日:2017-02-22

    申请号:CN201611083408.5

    申请日:2016-11-30

    CPC classification number: G06F1/022

    Abstract: 本发明公开一种可编程DDS任意波形信号发生器,包括信号发生器本体,所述信号发生器由触摸显示屏、核心控制器、可编程DDS模块、第一数模转换模块、椭圆低通滤波模块、乘法器调幅模块和第二数模转换模块组成;触摸显示屏与核心控制器连接;核心控制器与可编程DDS模块连接;可编程DDS模块的输出端经由第一数模转换模块连接椭圆低通滤波模块输入端,椭圆低通滤波模块的输出端连接乘法器调幅模块的一个输入端;核心控制器的输出端经由第二数模转换模块连接乘法器调幅模块的另一个输入端;乘法器调幅模块的输出端形成信号发生器本体的输出端。本发明具有稳定度高、精度高和高次谐波少等特点。

    一种智能户外运动手环
    90.
    发明公开

    公开(公告)号:CN104957844A

    公开(公告)日:2015-10-07

    申请号:CN201510458618.7

    申请日:2015-07-30

    Abstract: 本发明提供了一种智能户外运动手环,主要包括环境检测与计步模块、定位模块和手势检测模块。每次使用时,智能户外运动手环除检测用户的心率外,还通过定位模块获取用户的位置和速度,以及通过环境检测与计步模块感知用户所在位置的气压、高度和温度,并执行计步、指南针以及天气预报功能。中央处理器根据心率和计步结果计算用户的运动里程和消耗的卡路里,控制显示模块实时显示用户的实时速度、实时海拔、指南针偏转方向、实时心率、当前累积步数、天气预报、里程及当前消耗的卡路里等,用户通过手势检测模块实现显示数据的切换,中央处理器还将上述信息的最大值、最小值和平均值通过无线传输模块发送至外部通信终端。

Patent Agency Ranking