水下图像增强方法及装置

    公开(公告)号:CN118710528A

    公开(公告)日:2024-09-27

    申请号:CN202411197219.5

    申请日:2024-08-29

    IPC分类号: G06T5/60 G06N3/0455

    摘要: 本发明涉及图像处理技术领域,具体公开了一种水下图像增强方法及装置,包括:获取待增强水下图像,并将待增强水下图像通过第一图像增强编码器进行编码获得待增强低维特征向量,第一图像增强编码器为根据第一编解码优化数据优化后获得;将待增强低维特征向量输入目标映射网络,获得目标质量低维特征向量,目标映射网络为将第一编解码过程数据作为输入数据以及将第二编解码过程数据作为输出数据对基于注意力机制的神经网络模型进行训练获得;对目标质量低维特征向量通过第二图像增强编码器进行解码获得增强后的水下图像,第二图像增强编码器为根据第二编解码优化数据优化后获得。本发明提供的水下图像增强方法有效提升水下图像增强效果。

    基于平面二维码阵列的迁车台对接方法、装置及系统

    公开(公告)号:CN118015074A

    公开(公告)日:2024-05-10

    申请号:CN202410411353.4

    申请日:2024-04-08

    摘要: 本发明涉及机器人定位技术领域,具体公开了一种基于平面二维码阵列的迁车台对接方法、装置及系统,包括:获取平面二维码阵列的图像扫描信息,其中迁车台轨道平面设置由多个二维码定位标签形成的平面二维码阵列;对图像扫描信息进行检测以及信息解码获得单个二维码的位置信息和尺寸信息;根据单个二维码的位置信息和尺寸信息确定图像扫描装置与单个二维码的相对位姿信息;根据图像扫描装置与单个二维码的相对位姿信息确定图像扫描装置相对平面二维码阵列的空间位置信息;输出图像扫描装置相对平面二维码阵列的空间位置信息以控制迁车台与地面轨道的对准。本发明提供的基于平面二维码阵列的迁车台对接方法能够提升轨道对接的精度。

    轨道式转运机器人的控制方法、装置及系统

    公开(公告)号:CN116812477A

    公开(公告)日:2023-09-29

    申请号:CN202311069261.4

    申请日:2023-08-24

    IPC分类号: B65G35/00 B65G43/08 B65G47/74

    摘要: 本发明涉及机器人转运技术领域,具体公开了一种轨道式转运机器人的控制方法、装置及系统,包括:分别获取转运机器人的实时位置和每个驱动轮的载重分布信息;根据每个驱动轮的载重分布信息构建每个驱动轮的最大驱动力约束,并根据每个驱动轮的最大驱动力约束构建转运机器人总驱动力约束;根据转运机器人总驱动力约束和所述转运机器人的实时位置控制转运机器人的对接;根据所述转运机器人的实时位置和目标对接位置的差值并结合每个驱动轮的最大驱动力约束构建每个驱动轮的驱动力分配策略;根据每个驱动轮的驱动力分配策略生成驱动信号。本发明提供的轨道式转运机器人的控制方法提升了转运机器人与目标轨道的对接精度。

    基于渐进式信息解耦的跨域模型训练方法

    公开(公告)号:CN116778277A

    公开(公告)日:2023-09-19

    申请号:CN202310899182.X

    申请日:2023-07-20

    摘要: 本发明涉及目标检测技术领域,具体公开了一种基于渐进式信息解耦的跨域模型训练方法,包括:构建源域数据集和目标域数据集;将源域数据集和目标域数据集均输入至视觉目标检测器进行训练,挖掘与配准组件能够分别对源域数据集和目标域数据集提取到的浅层特征进行相似性特征挖掘与配准;语义校正组件能够分别对源域数据集和目标数据集提取到的中层特征进行上下文感知的语义校正;聚合分散组件能够根据源域数据集和目标域数据集的边界框、置信度和分类类别实现不同类别前景目标的聚合和分散。本发明提供的基于渐进式信息解耦的跨域模型训练方法能够有效解决跨域目标检测中前景目标特征和背景环境特征的耦合。

    一种非结构化道路状态参数估计方法及系统

    公开(公告)号:CN114565616B

    公开(公告)日:2022-12-09

    申请号:CN202210202063.X

    申请日:2022-03-03

    IPC分类号: G06T7/10 G06T5/50

    摘要: 本发明公开了一种非结构化道路状态参数估计方法及系统,其包括:步骤1,将采集到的点云数据与图像数据进行时间同步和空间同步,并获得激光雷达坐标系中的点云数据中的点云到像素坐标系中的像素的映射关系;步骤2,多传感器融合地面分割,输出点云地面分割结果和图像地面分割结果;步骤3,地面点云数据增强;步骤4,道路自适应分块拟合,实现路面建模;步骤5,道路参数估计:基于路面平面模型,通过计算相邻两平面的法向量夹角即可求得相邻平面的相对纵向/横向坡度;通过计算地面点云到对应拟合平面之间的距离,并采用距离的均方根作为路面粗糙度的评价指标;通过拟合每个分块平面的道路边界,进行道路曲率估计。