晶体材料熔化-凝固过程中进行热量和结构的高通量表征方法及装置

    公开(公告)号:CN107843614B

    公开(公告)日:2020-05-19

    申请号:CN201710842332.8

    申请日:2017-09-18

    摘要: 本发明公开了一种晶体材料熔化‑凝固过程中进行热量和结构的高通量表征方法及装置,采用差示扫描量热法对晶体熔化‑凝固过程中的热量变化情况进行实时表征,同时采用X射线衍射对该过程的结构信息进行实时分析,在形核之后的晶体生长过程中,采用X射线成像对组织的演化进行实时观测。本发明在一次实验当中,同时得到晶体材料熔化‑凝固过程中的热量信息;得到凝固前,熔体结构随温度的变化信息;得到凝固时,凝固组织的演变信息,如固/液界面推进速度、枝晶形貌等信息。这一装置将极大缩短晶体材料熔化‑凝固过程研究周期,实现同一实验中对该过程热量及结构信息的高通量表征测试分析,应用于调控晶体材料性能。

    晶体材料熔化-凝固过程中进行热量和结构的高通量表征方法及装置

    公开(公告)号:CN107843614A

    公开(公告)日:2018-03-27

    申请号:CN201710842332.8

    申请日:2017-09-18

    摘要: 本发明公开了一种晶体材料熔化-凝固过程中进行热量和结构的高通量表征方法及装置,采用差示扫描量热法对晶体熔化-凝固过程中的热量变化情况进行实时表征,同时采用X射线衍射对该过程的结构信息进行实时分析,在形核之后的晶体生长过程中,采用X射线成像对组织的演化进行实时观测。本发明在一次实验当中,同时得到晶体材料熔化-凝固过程中的热量信息;得到凝固前,熔体结构随温度的变化信息;得到凝固时,凝固组织的演变信息,如固/液界面推进速度、枝晶形貌等信息。这一装置将极大缩短晶体材料熔化-凝固过程研究周期,实现同一实验中对该过程热量及结构信息的高通量表征测试分析,应用于调控晶体材料性能。

    一种真空蒸镀试验装置及其方法

    公开(公告)号:CN115679268B

    公开(公告)日:2024-10-18

    申请号:CN202211430510.3

    申请日:2022-11-15

    申请人: 上海大学

    IPC分类号: C23C14/24 C23C14/52

    摘要: 本发明公开一种真空蒸镀试验装置及其方法,涉及金属真空蒸镀试验设备技术领域,包括真空腔和透明容器,真空腔通过底部的开口与透明容器连通;真空腔连通有真空泵,真空腔内部设置有待镀金属试样;透明容器上设置有用于对其加热的第一加热机构,透明容器内部盛有蒸发金属试样,且透明容器在与真空腔的连接位置设置有易断部;本发明通过设置石英坩埚,将蒸发金属试样的蒸发腔转移至真空腔的外部,工作人员能够通过透明的石英坩埚对蒸发金属试样的蒸发过程进行观察;并且透明容器具有易断部,蒸发完成后可以通过破坏易断部使得石英坩埚脱落,金属蒸汽不会回流至石英坩埚中,从而降低了蒸发金属试样的残留,利于蒸发金属试样蒸发量的准确获取。

    一种基于磁场调控的双相钛合金激光增材制造方法

    公开(公告)号:CN115846688B

    公开(公告)日:2024-09-24

    申请号:CN202211668941.3

    申请日:2022-12-23

    申请人: 上海大学

    摘要: 本发明提供了一种基于磁场调控的双相钛合金激光增材制造方法,属于金属增材制造技术领域。本发明提供的磁场调控的双相钛合金激光增材制造方法,包括:在磁场作用下,对双相钛合金粉末进行进行激光增材制造,得到双相钛合金。本发明采用外加磁场实时影响双相钛合激光增材制造过程中的高温相变区域,实时控制组织演化过程,抑制残余应力并提高综合力学性能;将磁场引入激光增材制造的原位热处理中,将磁场作用于由热循环造成的高温相变区域,为固态相变提供额外的磁场能量,在磁吉布斯自由能和高温的共同作用下,改变多次固态相变过程的相变热力学和元素的扩散行为,引导位错在晶内迁移,促进马氏体的分解和网篮结构的粗化。

    基于深度学习的陶瓷型芯烧结过程数据采集和形变预测方法

    公开(公告)号:CN117291082A

    公开(公告)日:2023-12-26

    申请号:CN202311390044.5

    申请日:2023-10-25

    申请人: 上海大学

    摘要: 本发明涉及数值模拟采集数据方法及深度学习技术领域,且公开了基于深度学习的陶瓷型芯烧结过程数据采集和形变预测方法,其独特之处在于,其整合了以下步骤,S1、实施陶瓷型芯烧结过程的数值模拟仿真;S2、建立用于深度学习的陶瓷型芯烧结前后切片数据集;S3、建立基于U‑net的深度学习模型用于预测陶瓷型芯烧结前后像素值变化;S4、通过三维重建算法将模型预测的新烧结工艺参数下陶瓷型芯的切片组重建出完整的陶瓷型芯。这项技术的运用,可以为涡轮叶片陶瓷型芯的制造提供一种高效精准的形变预测方法,提高了型芯生产效率,节约了生产试错成本,从而为提升陶瓷型芯等精密装备的精度及成品率提供有力的贡献。