-
公开(公告)号:CN114066041A
公开(公告)日:2022-02-18
申请号:CN202111334421.4
申请日:2021-11-11
申请人: 上海隧道工程有限公司 , 上海交通大学 , 上海三足鼎建设工程有限公司
IPC分类号: G06Q10/04 , G06F30/20 , G06F113/08 , G06F119/14
摘要: 本发明公开了一种盾构隧道同步注浆量预测方法,包括:根据弹塑性理论,建立土体回弹对盾尾空隙的充填体积;采用基于等效柱状结构模型计算同步注浆压力作用下土体沿隧道径向的压缩变形;将渗透路径上的浆液分区间处理为Bingham流体(非牛顿流体)、混合体和Newton流体,建立隧道断面径向渗透扩散距离的理论解并根据土体孔隙比和渗透距离计算该部分注浆量;根据叠加模型建立综合因素作用下盾构同步注浆量预测计算公式。根据本发明,通过变形、空间充填渗透扩散范围的叠加方法,建立适用于砂性地层的同步注浆扩散距离和注浆量的理论预测方法。
-
公开(公告)号:CN114036614A
公开(公告)日:2022-02-11
申请号:CN202111332776.X
申请日:2021-11-11
申请人: 深中通道管理中心 , 上海市隧道工程轨道交通设计研究院 , 上海交通大学 , 上海三足鼎建设工程有限公司
IPC分类号: G06F30/13
摘要: 本发明公开了一种跨海沉管隧道淤积和突淤荷载计算方法,包括:充分调研、收集隧道区域海洋环境监测数据基础上,理论分析,根据现场试验结果,建立采砂开放期和关闭期两种条件下的淤积厚度理论模型和计算方法。根据工程区域回淤特征,建立淤积荷载计算模型,在淤积厚度基础上,分层淤积叠加模型,建立了淤积状态下隧道淤积全量荷载和淤积增量荷载,根据突淤物质在海水中的塌落和成型特征,建立海洋突淤几何形态模型,采用概率密度函数建立了突淤空间分布函数及对应的突淤荷载分布函数。根据本发明,建立工程区域海洋环境淤积荷载及罕遇突变性淤积形成的灾变荷载的理论模型和计算方法,为沉管隧道运营期上部动态变化荷载计算提供实用方法。
-
公开(公告)号:CN110334948B
公开(公告)日:2023-04-07
申请号:CN201910602681.1
申请日:2019-07-05
申请人: 上海交通大学 , 上海交通大学烟台信息技术研究院
IPC分类号: G06Q10/0635 , G06Q10/0639 , G06Q50/06 , G06F18/214 , G01R31/12
摘要: 本发明公开了一种基于特征量预测的电力设备局部放电严重程度评估方法,其包括训练步骤和评估步骤,其中:训练步骤包括:(1)收集电力设备的案例PRPS图谱数据;(2)对收集的案例PRPS图谱数据进行预处理;(3)采用自编码器提取的案例PRPS图谱数据的局部放电特征向量;(4)构建门控循环单元模块,输入局部放电特征向量以对其进行训练,以使其输出预测局部放电特征向量;(5)构建基于卷积神经网络的故障二分类模块,采用预测局部放电特征向量作为输入以对其进行训练,以使其基于预测局部放电特征向量所表征的故障概率值而输出该预测局部放电特征向量是否表征电力设备故障的判断。
-
公开(公告)号:CN110334866B
公开(公告)日:2022-11-11
申请号:CN201910602683.0
申请日:2019-07-05
申请人: 上海交通大学 , 上海交通大学烟台信息技术研究院
摘要: 本发明公开了一种考虑绝缘缺陷类别与故障关联性的电力设备故障概率预测方法,其包括步骤:(1)采集电力设备的PRPS图谱数据并对其进行预处理;(2)基于经过预处理的PRPS图谱数据提取局部放电特征;(3)将局部放电特征输入经过训练的卷积神经网络,经过训练的卷积神经网络输出电力设备具有某类绝缘缺陷的概率值P(Dk);并且还将局部放电特征输入经过训练的长短时记忆神经网络,经过训练的长短时记忆神经网络输出电力设备在Dk的条件下发生故障的概率P(F|Dk);(4)基于下述公式获得电力设备的最终故障概率P(F):此外,本发明还公开了一种电力设备故障概率预测系统。
-
公开(公告)号:CN110334866A
公开(公告)日:2019-10-15
申请号:CN201910602683.0
申请日:2019-07-05
申请人: 上海交通大学 , 上海交通大学烟台信息技术研究院
摘要: 本发明公开了一种考虑绝缘缺陷类别与故障关联性的电力设备故障概率预测方法,其包括步骤:(1)采集电力设备的PRPS图谱数据并对其进行预处理;(2)基于经过预处理的PRPS图谱数据提取局部放电特征;(3)将局部放电特征输入经过训练的卷积神经网络,经过训练的卷积神经网络输出电力设备具有某类绝缘缺陷的概率值P(Dk);并且还将局部放电特征输入经过训练的长短时记忆神经网络,经过训练的长短时记忆神经网络输出电力设备在Dk的条件下发生故障的概率P(F|Dk);(4)基于下述公式获得电力设备的最终故障概率P(F):此外,本发明还公开了一种电力设备故障概率预测系统。
-
公开(公告)号:CN110334948A
公开(公告)日:2019-10-15
申请号:CN201910602681.1
申请日:2019-07-05
申请人: 上海交通大学 , 上海交通大学烟台信息技术研究院
摘要: 本发明公开了一种基于特征量预测的电力设备局部放电严重程度评估方法,其包括训练步骤和评估步骤,其中:训练步骤包括:(1)收集电力设备的案例PRPS图谱数据;(2)对收集的案例PRPS图谱数据进行预处理;(3)采用自编码器提取的案例PRPS图谱数据的局部放电特征向量;(4)构建门控循环单元模块,输入局部放电特征向量以对其进行训练,以使其输出预测局部放电特征向量;(5)构建基于卷积神经网络的故障二分类模块,采用预测局部放电特征向量作为输入以对其进行训练,以使其基于预测局部放电特征向量所表征的故障概率值而输出该预测局部放电特征向量是否表征电力设备故障的判断。
-
公开(公告)号:CN110334865A
公开(公告)日:2019-10-15
申请号:CN201910602682.6
申请日:2019-07-05
申请人: 上海交通大学 , 上海交通大学烟台信息技术研究院
摘要: 本发明公开了一种基于卷积神经网络的电力设备故障率预测方法,其包括训练步骤和预测步骤,其中,训练步骤包括:(1)收集电力设备的案例PRPS图谱;(2)对收集的案例PRPS图谱数据进行预处理;(3)构建第一卷积神经网络模块,并对第一卷积神经网络模块进行训练,以使其输出为案例PRPS图谱数据对应的缺陷类型;(4)基于缺陷类型构建各个缺陷类型的数据集;(5)对应各个缺陷类型分别构建各自的故障二分类子模块,其中每一个故障二分类子模块均基于第二卷积神经网络模块而构建;训练第二卷积神经网络,以使各故障二分类子模块基于案例PRPS图谱数据所得到发生故障的概率值,而输出电力设备是否发生故障的判断。
-
公开(公告)号:CN110334865B
公开(公告)日:2023-04-18
申请号:CN201910602682.6
申请日:2019-07-05
申请人: 上海交通大学 , 上海交通大学烟台信息技术研究院
IPC分类号: G06Q10/04 , G06Q10/0635 , G06Q10/20 , G06Q50/06 , G06F18/243 , G06F18/2415 , G06F18/214 , G06N3/045 , G06N3/0464 , G06N3/047 , G06N3/048 , G06N3/084
摘要: 本发明公开了一种基于卷积神经网络的电力设备故障率预测方法,其包括训练步骤和预测步骤,其中,训练步骤包括:(1)收集电力设备的案例PRPS图谱;(2)对收集的案例PRPS图谱数据进行预处理;(3)构建第一卷积神经网络模块,并对第一卷积神经网络模块进行训练,以使其输出为案例PRPS图谱数据对应的缺陷类型;(4)基于缺陷类型构建各个缺陷类型的数据集;(5)对应各个缺陷类型分别构建各自的故障二分类子模块,其中每一个故障二分类子模块均基于第二卷积神经网络模块而构建;训练第二卷积神经网络,以使各故障二分类子模块基于案例PRPS图谱数据所得到发生故障的概率值,而输出电力设备是否发生故障的判断。
-
公开(公告)号:CN112307851A
公开(公告)日:2021-02-02
申请号:CN201910710454.0
申请日:2019-08-02
申请人: 上海交通大学烟台信息技术研究院 , 上海交通大学
摘要: 本发明公开了一种电力铁塔上鸟巢的识别方法,其包括训练步骤和识别步骤,训练步骤包括:S100:采集电力铁塔二维案例图像;S200:构建卷积神经网络并对其进行训练,以使卷积神经网络进行数据简化处理;S300:构建采用多个限制玻尔兹曼机堆叠形成的深度信念网络,将二维数据降维到含有电力铁塔图像特征的一维数据输入深度信念网络,采用一维数据对深度信念网络进行训练,以使深度信念网络输出识别结果;识别步骤包括:D100:将待识别的电力铁塔二维图像输入经过训练的卷积神经网络,卷积神经网络输出经过数据简化的二维数据;D200:将二维数据降维至一维数据输入经过训练的深度信念网络;D300:深度信念网络输出识别结果。
-
公开(公告)号:CN118096631A
公开(公告)日:2024-05-28
申请号:CN202211498519.8
申请日:2022-11-28
申请人: 复旦大学 , 上海交通大学 , 上海驹电电气科技有限公司
摘要: 本发明提供了一种基于NSST和图像能量算法的电力设备缺陷实时监测方法及系统,其包括步骤:(1)采集电力设备的可见光图像以及与该可见光图像对应的红外图像;(2)采用能量图像算法将红外图像分割为若干模块,确定分割后的各模块的温度特征,并将各模块的温度特征标注在红外图像上;(3)将经过标注的红外图像和与之对应的可见光图像分别进行NSST分解,以分别得到各自的低频子带图和高频子带图;(4)将各低频子带图进行融合得到融合低频子带图;将各高频子带图融合,得到融合高频子带图;(5)基于融合低频子带图和融合高频子带图进行NSST逆变换,得到融合图像;(6)基于融合图像判断电力设备的缺陷位置。
-
-
-
-
-
-
-
-
-