-
公开(公告)号:CN118314984A
公开(公告)日:2024-07-09
申请号:CN202410529223.0
申请日:2024-04-29
申请人: 东北大学
IPC分类号: G16C20/70 , G16C20/30 , G16C60/00 , G06V10/44 , G06F18/213 , G06F18/25 , G06N3/0464 , G06N3/048 , G06N3/08
摘要: 本发明公开了一种基于多模态数据卷积特征融合的C‑Mn钢力学性能预测方法,属于钢材性能预测技术领域,包括以下步骤:构建初始多模态数据集;构建实际多模态数据集;将实际多模态数据集划分为训练集及测试集;利用多模态数据卷积特征融合的卷积神经网络模型对训练数据进行计算,优化模型参数,得到待预测的C‑Mn钢材力学性能预测模型并对测试数据进行计算,并对模型的泛化性能进行评估,得到待应用的基于多模态数据卷积特征融合的C‑Mn钢力学性能预测模型。本发明采用上述的一种基于多模态数据卷积特征融合的C‑Mn钢力学性能预测方法,通过不同维度的卷积神经网络模型有效的将成分工艺与显微组织图像数据信息进行耦合,提高了C‑Mn钢材力学性能的预测精度。
-
公开(公告)号:CN118298191A
公开(公告)日:2024-07-05
申请号:CN202410529226.4
申请日:2024-04-29
申请人: 东北大学
IPC分类号: G06V10/44 , G06V20/69 , G06V10/774 , G06N3/0455 , G06N3/0985
摘要: 本发明公开了一种基于Seg‑Net模型的提取方法在提取钢铁微观组织特征中的应用,属于铁金相图像分析和处理技术领域,包括以下步骤:将获得的金相照片划分为训练集和测试集;采用深度学习模型对训练集数据进行训练,结合数据增强等手段对训练数据集进行扩充,构建具有识别晶粒组织能力的深度学习模型;利用具有识别晶粒组织能力的深度学习模型对待识别的金相照片进行识别,得到待识别照片的显微组织信息。本发明采用上述一种基于Seg‑Net模型的提取方法在提取钢铁微观组织特征中的应用,通过对金相显微组织照片智能识别获取显微组织特征信息,可以简化由于传统获取方法造成的繁琐工作及时获取显微组织信息的同时兼具较高的精度。
-