-
公开(公告)号:CN114694091B
公开(公告)日:2024-06-14
申请号:CN202210223809.5
申请日:2022-03-09
Applicant: 东南大学
IPC: G06V20/52 , G06V20/40 , G06V10/82 , G06N3/0464 , G06N3/096 , G06N3/09 , G06V10/774
Abstract: 本发明公开了一种复杂交通环境下基于监控视频的交通参与者检测方法。考虑到复杂交通场景中因交通参与者类型丰富且遮挡情况严重而导致存在各式各样的小目标,本发明基于深度目标检测网络YOLO V5,创新地设计了超分辨率特征提取模块,以保留小目标更丰富的外观特征。为了更好地训练所提出的超分辨率特征提取模块,进一步提出了知识蒸馏训练方法,指导检测模型以较小分辨率图片为输入的性能匹配其以较大分辨率图片为输入的感知性能,既缓解了因直接利用较大分辨率为输入而带来的计算负担,也获得了匹配较大分辨率为输入时的感知性能。提出方法有效提升了复杂交通环境下交通参与者的检测精度,有望被应用到实际交通监控场景中。
-
公开(公告)号:CN114694091A
公开(公告)日:2022-07-01
申请号:CN202210223809.5
申请日:2022-03-09
Applicant: 东南大学
Abstract: 本发明公开了一种复杂交通环境下基于监控视频的交通参与者检测方法。考虑到复杂交通场景中因交通参与者类型丰富且遮挡情况严重而导致存在各式各样的小目标,本发明基于深度目标检测网络YOLO V5,创新地设计了超分辨率特征提取模块,以保留小目标更丰富的外观特征。为了更好地训练所提出的超分辨率特征提取模块,进一步提出了知识蒸馏训练方法,指导检测模型以较小分辨率图片为输入的性能匹配其以较大分辨率图片为输入的感知性能,既缓解了因直接利用较大分辨率为输入而带来的计算负担,也获得了匹配较大分辨率为输入时的感知性能。提出方法有效提升了复杂交通环境下交通参与者的检测精度,有望被应用到实际交通监控场景中。
-
公开(公告)号:CN114996544B
公开(公告)日:2024-07-12
申请号:CN202210448342.4
申请日:2022-04-26
Applicant: 东南大学
IPC: G06F16/909 , G06F16/906 , G06F16/29 , G01C21/30 , G06F18/2321
Abstract: 本发明公开了一种基于手机信令数据和Mix‑Markov模型的出行路径提取方法。首先对手机信令数据进行“降噪”预处理,结合基于时空信息的DBSCAN聚类算法,确定有效轨迹点;然后根据隐马尔可夫模型分析待匹配点与候选点之间的空间关系,建立发射概率向量与转移概率矩阵;最后根据维特比算法获取最优路径,即得到地图匹配结果,完成手机用户的出行路径提取。本发明在进行用户轨迹数据地图匹配时,仅需要输入用户的轨迹数据获取用户出行路径,计算速度快,匹配结果准确,为用户出行特征的分析提供了充分的研究数据。
-
公开(公告)号:CN114996544A
公开(公告)日:2022-09-02
申请号:CN202210448342.4
申请日:2022-04-26
Applicant: 东南大学
IPC: G06F16/909 , G06F16/906 , G06F16/29 , G01C21/30 , G06K9/62
Abstract: 本发明公开了一种基于手机信令数据和Mix‑Markov模型的出行路径提取方法。首先对手机信令数据进行“降噪”预处理,结合基于时空信息的DBSCAN聚类算法,确定有效轨迹点;然后根据隐马尔可夫模型分析待匹配点与候选点之间的空间关系,建立发射概率向量与转移概率矩阵;最后根据维特比算法获取最优路径,即得到地图匹配结果,完成手机用户的出行路径提取。本发明在进行用户轨迹数据地图匹配时,仅需要输入用户的轨迹数据获取用户出行路径,计算速度快,匹配结果准确,为用户出行特征的分析提供了充分的研究数据。
-
-
-