-
公开(公告)号:CN117524347A
公开(公告)日:2024-02-06
申请号:CN202311547565.7
申请日:2023-11-20
申请人: 中南大学
摘要: 本发明公开了一种机器学习加速的酸根阴离子水化结构第一性原理预测方法,该方法包括如下步骤:S1、构建离子水化结构M_mH2O,并进行优化;S2、对优化后的离子水化结构进行扰动,生成训练数据集;S3、对所述训练数据集进行机器学习力场训练,建立机器学习模型;S4、对所述机器学习模型进行分子动力学模拟,并标识出力偏差在预设范围内的原子结构作为候选构型;S5、将通过验证的所述候选构型合并到后续迭代训练集中,以进一步完善和训练机器学习模型直至模型收敛,得到精准的深度势能模型;S6、对深度势能模型进行深度学习加速的分子动力学模拟,最终得到酸根阴离子的水化结构。本发明在保证计算精度的前提下,极大的提升了计算效率,降低了计算成本。
-
公开(公告)号:CN116924544A
公开(公告)日:2023-10-24
申请号:CN202311184483.0
申请日:2023-09-14
申请人: 中南大学
IPC分类号: C02F1/52 , C02F1/42 , C02F101/20
摘要: 本发明公开了一种微蚀含铜废水的资源化处理方法,该方法是对FeS材料使用同时含羧基和巯基的单体、交联剂、稳定分散剂进行改性,得到FeS基pH响应材料#imgabs0#,将该材料加入至弱酸性的微蚀含铜废水中进行反应,经过硫化沉淀、置换、吸附络合、絮凝沉淀等过程,最终得到以CuS为主要成分的沉淀。该方法充分利用了FeS基材料所具有的pH响应性和丰富的表面活性位点,可以仅通过调节微蚀含铜废水的pH值,以控制实现废水中铜离子回收率达到99.8%以上。
-
公开(公告)号:CN113060817B
公开(公告)日:2022-08-16
申请号:CN202110291358.4
申请日:2021-03-18
申请人: 中南大学
IPC分类号: C02F1/70 , C02F101/22 , C02F103/16
摘要: 本发明公开了一种矿物改性材料处理电镀含铬废水的方法,该处理方法为:S1、将(1.5~5):1的活性磁黄铁矿和活性磁赤铁矿投加到含铬废水中,在pH为1.5~2.5、温度为80~90℃的条件下反应1~1.5h;S2、将步骤S1反应后的体系的pH调节至3.5~4.0,通入空气,在温度为80~90℃条件下反应0.5~1.5h,将反应混合液转移至磁场环境中进行磁力沉降,过滤。改性后的磁黄铁矿活性位点增多,活性增强;改性后的磁赤铁矿可以作为磁性晶核;在合适的pH范围内,Cr3+和Fe3+形成沉淀,并在活性磁赤铁矿表面形成具有核壳结构的紧密结合体;在外加磁场作用下,具有磁性的核壳共同沉降,改善沉降效果。
-
公开(公告)号:CN114314997B
公开(公告)日:2022-06-21
申请号:CN202210243820.8
申请日:2022-03-14
申请人: 中南大学
IPC分类号: C02F9/10 , C02F103/16 , C02F101/22
摘要: 本发明公开了一种基于界面配位调控的电镀含铬废水资源化处理方法,包括以下步骤:先将天然磁铁矿和天然氧化铅矿经过破碎、研磨、浮选后,经过焙烧,得到改性磁铁矿和改性氧化铅矿;然后将电镀含铬废水中加入改性磁铁矿,生成沉淀A和滤液A;将滤液A加入改性氧化铅矿,得到沉淀B和滤液B;将沉淀B加入水,通入硫酸盐或/和碳酸盐溶液,过滤得沉淀C和滤液C;将滤液C冷却至室温,析出铬酸盐晶体,过滤后得到铬酸盐沉淀,干燥回收。本发明利用三价铬和六价铬的特性,对三价铬和六价铬分别处理,从而达到含铬废水深度净化以及铬资源化回收的目的,实现了含铬废水的资源化处理,铬去除率高,生产成本低,操作简单,环境友好,适合于工业化应用。
-
公开(公告)号:CN113562877A
公开(公告)日:2021-10-29
申请号:CN202110842407.9
申请日:2021-07-26
申请人: 中南大学
IPC分类号: C02F9/04 , C02F103/16 , C02F101/20
摘要: 本发明公开了一种含EDTA‑Ni废水的处理方法,该处理方法包括如下步骤:S1、调节EDTA‑Ni废水pH值为2.5~3.5,向废水中加入硫酸亚铁,搅拌;S2、向S1的反应物中加入螯合药剂进行螯合反应;S3、向S2的反应物中加入絮凝剂絮凝沉淀并过滤。相比传统芬顿氧化破络,本发明采用置换破络,不需要添加双氧水,节省药剂;另外,本发明中的螯合药剂具有去除深度高、去除效果较稳定,污泥量小,且生成的螯合沉淀比传统的氢氧化镍沉淀更为稳定,堆放或运输过程中过程中不易分解,不会造成二次污染问题。
-
公开(公告)号:CN113060860A
公开(公告)日:2021-07-02
申请号:CN202110302740.0
申请日:2021-03-22
申请人: 中南大学
IPC分类号: C02F9/04 , C02F101/20 , C02F103/16
摘要: 本发明公开了一种化学镍废水的处理方法,该方法包括如下步骤:S1、将废水pH值调节至5~6,然后向其中加入H2O2溶液进行破络反应;S2、将步骤S1反应后的体系pH值调节至6~8,然后向其中加入摩尔比为(1~2):1的4‑氨基‑3‑巯基‑1,2,4‑三唑和二甲基二硫代甲酸盐的混合药剂;S3、向步骤S2反应后的体系中加入絮凝剂进行絮凝沉降,然后固液分离。本发明采用先破络后螯合沉淀的处理工艺处理废水中的镍,采用4‑氨基‑3‑巯基‑1,2,4‑三唑和二甲基二硫代甲酸盐复配为螯合药剂,并配合合适的pH值条件,大大提升废水中镍的去除效果,且经絮凝沉降得到颗粒较大的沉淀,便于后续固液分离。
-
公开(公告)号:CN112723610A
公开(公告)日:2021-04-30
申请号:CN202110095425.5
申请日:2021-01-25
申请人: 中南大学
IPC分类号: C02F9/04
摘要: 本发明提供一种研磨废液COD的高效去除方法,包括如下步骤:S1将研磨废液搅拌均匀,调节研磨废液pH值至6.5~7.5,得到溶液a;S2向所述溶液a中加入铁盐和铁矿粉末,进行搅拌反应处理,得到溶液b;S3向所述溶液b中加入絮凝剂,进行搅拌絮凝处理,得到溶液c;S4将溶液c静置,过滤。本发明采用铁盐和铁矿粉末配合对研磨废液进行吸附处理,铁盐水解生成高表面活性的氢氧化铁吸附有机物分子,同时铁矿粉末能够作为晶核,在铁矿粉末表面富集高表面活性的氢氧化铁,增加了吸附总表面积,协同作用提高吸附能力,之后通过絮凝沉淀脱去研磨废液中的有机物,实现COD高效去除,去除率能够达到92.04%。
-
公开(公告)号:CN116924544B
公开(公告)日:2023-12-19
申请号:CN202311184483.0
申请日:2023-09-14
申请人: 中南大学
IPC分类号: C02F1/52 , C02F1/42 , C02F101/20
摘要: 本发明公开了一种微蚀含铜废水的资源化处理方法,该方法是对FeS材料使用同时含羧基和巯基的单体、交联剂、稳定分散剂进行改性,得到FeS基pH响应材料 ,将该材料加入至弱酸性的微蚀含铜废水中进行反应,经过硫化沉淀、置换、吸附络合、絮凝沉淀等过程,最终得到以CuS为主要成分的沉淀。该方法充分利用了FeS基材料所具有的pH响应性和丰富的表面活性位点,可以仅通过调节微蚀含铜废水的pH值,以控制实现废水中铜离子回收率达到99.8%以上。
-
公开(公告)号:CN113060860B
公开(公告)日:2022-02-11
申请号:CN202110302740.0
申请日:2021-03-22
申请人: 中南大学
IPC分类号: C02F9/04 , C02F101/20 , C02F103/16
摘要: 本发明公开了一种化学镍废水的处理方法,该方法包括如下步骤:S1、将废水pH值调节至5~6,然后向其中加入H2O2溶液进行破络反应;S2、将步骤S1反应后的体系pH值调节至6~8,然后向其中加入摩尔比为(1~2):1的4‑氨基‑3‑巯基‑1,2,4‑三唑和二甲基二硫代甲酸盐的混合药剂;S3、向步骤S2反应后的体系中加入絮凝剂进行絮凝沉降,然后固液分离。本发明采用先破络后螯合沉淀的处理工艺处理废水中的镍,采用4‑氨基‑3‑巯基‑1,2,4‑三唑和二甲基二硫代甲酸盐复配为螯合药剂,并配合合适的pH值条件,大大提升废水中镍的去除效果,且经絮凝沉降得到颗粒较大的沉淀,便于后续固液分离。
-
公开(公告)号:CN112499739B
公开(公告)日:2022-01-18
申请号:CN202011256488.6
申请日:2020-11-11
申请人: 中南大学
IPC分类号: C02F1/52 , C02F101/20
摘要: 本发明公开了一种通过磨矿机械化学调控处理含铜废水的方法,包括如下步骤:将天然硫化矿进行破碎,使其表面产生具有活性的硫化位点,得到矿物基硫化剂;将含铜废水的pH调节至酸性,再加入次氯酸钠和过氧化氢进行氧化破络;将矿物基硫化剂与氧化破络后得到的含铜废水加入到球磨机中进行共磨反应;得到的反应混合液进行重力沉降,再进行抽滤分离,得到净化液和硫化铜沉淀。本发明有效的利用了天然硫化矿中的硫资源与含铜废水中铜进行共磨反应,从而实现了高效去除废水中的重金属铜,同时天然硫化矿由于价格便宜,也大大降低了废水处理的成本。
-
-
-
-
-
-
-
-
-