-
公开(公告)号:CN112941459A
公开(公告)日:2021-06-11
申请号:CN202110125510.1
申请日:2021-01-29
申请人: 中国人民解放军军事科学院国防科技创新研究院 , 中国矿业大学
IPC分类号: C23C12/02
摘要: 本发明提供一种难熔高熵合金表面抗氧化涂层的制备方法,包括以下步骤:a.对采用熔炼或烧结法制备的难熔高熵合金进行表面预处理;b.在氩气或氮气等保护性气氛下,对预处理后合金试样进行包埋渗处理,渗剂组成为Si、Al、B、稀土氧化物、催化剂和填充剂,渗层制备温度为1150~1350℃,保温时间为4~15h。本发明通过被渗元素的扩散渗入+原位反应实现在难熔高熵合金表面制备多元硅化物涂层,该涂层可有效为难熔高熵合金提供1450℃下的高温防护,且涂层制备工艺简单可控、成本低廉,对具有复杂形状的实际工件也具有可操作性。
-
公开(公告)号:CN111363964A
公开(公告)日:2020-07-03
申请号:CN202010163307.9
申请日:2020-03-10
申请人: 中国人民解放军军事科学院国防科技创新研究院 , 中国矿业大学
摘要: 本发明提供一种W-Ta-Mo-Nb-Hf-C高温高熵合金及其制备方法。该高温高熵合金中由W、Ta、Mo、Nb、Hf和C等原子比或非等原子比组成。本发明还提供该高温高熵合金的制备方法,包括:1)称取所需重量的W、Ta、Mo、Nb、Hf和C原料;2)进行真空电弧熔炼。本发明制备的W-Ta-Mo-Nb-Hf-C高温高熵合金在1800℃仍具有266MPa强度,可用于弥补镍基高温合金1200℃以上温度时强度不足,取代镍基高温合金用于高温结构领域。
-
公开(公告)号:CN111235455A
公开(公告)日:2020-06-05
申请号:CN202010162521.2
申请日:2020-03-10
申请人: 中国人民解放军军事科学院国防科技创新研究院 , 中国矿业大学
摘要: 本发明提供一种W-Ta-Mo-Nb-Zr高温高熵合金及其制备方法。该高温高熵合金中由W、Ta、Mo、Nb和Zr等原子比或非等原子比组成。本发明还提供该高温高熵合金的制备方法,包括:1)称取所需重量的W、Ta、Mo、Nb、Zr原料;2)进行真空电弧熔炼。本发明制备的W-Ta-Mo-Nb-Zr高温高熵合金可用于弥补镍基高温合金1200℃以上温度时强度不足,取代镍基高温合金用于高温结构领域。
-
公开(公告)号:CN112893852A
公开(公告)日:2021-06-04
申请号:CN202110068436.4
申请日:2021-01-19
申请人: 中国矿业大学 , 中国人民解放军军事科学院国防科技创新研究院
摘要: 本发明公开了一种难熔高熵合金粉末制备方法。该制备方法为:首先把3~7种难熔金属元素和0~3种轻质元素使用真空熔炼法制备出难熔高熵合金铸锭;再使用机械破碎法进行制粉;最后使用等离子球化法获得所需粒径的球形难熔高熵合金粉末,粉末粒径为10~200μm。该制备方法可以将小尺寸难熔高熵合金铸锭加工成粉末,工艺步骤简单,制粉效率高,可实现高熔点合金的粉末制备,无需制备难熔高熵合金棒材。本发明制备的高熵合金粉末粒径可控、成分均匀、生产效率高。
-
公开(公告)号:CN111235455B
公开(公告)日:2021-06-01
申请号:CN202010162521.2
申请日:2020-03-10
申请人: 中国人民解放军军事科学院国防科技创新研究院 , 中国矿业大学
摘要: 本发明提供一种W‑Ta‑Mo‑Nb‑Zr高温高熵合金及其制备方法。该高温高熵合金中由W、Ta、Mo、Nb和Zr等原子比或非等原子比组成。本发明还提供该高温高熵合金的制备方法,包括:1)称取所需重量的W、Ta、Mo、Nb、Zr原料;2)进行真空电弧熔炼。本发明制备的W‑Ta‑Mo‑Nb‑Zr高温高熵合金可用于弥补镍基高温合金1200℃以上温度时强度不足,取代镍基高温合金用于高温结构领域。
-
公开(公告)号:CN111334697A
公开(公告)日:2020-06-26
申请号:CN202010163327.6
申请日:2020-03-10
申请人: 中国人民解放军军事科学院国防科技创新研究院 , 中国矿业大学
摘要: 本发明提供一种W-Ta-Mo-Nb-C高温高熵合金及其制备方法。该高温高熵合金中由W、Ta、Mo、Nb和C等原子比或非等原子比组成。本发明还提供该高温高熵合金的制备方法,包括:1)称取所需重量的W、Ta、Mo、Nb、C原料;2)进行真空电弧熔炼。本发明制备的W-Ta-Mo-Nb-C高温高熵合金在1800℃仍具有291MPa强度,可用于弥补镍基高温合金1200℃以上温度时强度不足,取代镍基高温合金用于高温结构领域。
-
公开(公告)号:CN111363964B
公开(公告)日:2021-08-20
申请号:CN202010163307.9
申请日:2020-03-10
申请人: 中国人民解放军军事科学院国防科技创新研究院 , 中国矿业大学
摘要: 本发明提供一种W‑Ta‑Mo‑Nb‑Hf‑C高温高熵合金及其制备方法。该高温高熵合金中由W、Ta、Mo、Nb、Hf和C等原子比或非等原子比组成。本发明还提供该高温高熵合金的制备方法,包括:1)称取所需重量的W、Ta、Mo、Nb、Hf和C原料;2)进行真空电弧熔炼。本发明制备的W‑Ta‑Mo‑Nb‑Hf‑C高温高熵合金在1800℃仍具有266MPa强度,可用于弥补镍基高温合金1200℃以上温度时强度不足,取代镍基高温合金用于高温结构领域。
-
公开(公告)号:CN111334697B
公开(公告)日:2021-07-09
申请号:CN202010163327.6
申请日:2020-03-10
申请人: 中国人民解放军军事科学院国防科技创新研究院 , 中国矿业大学
摘要: 本发明提供一种W‑Ta‑Mo‑Nb‑C高温高熵合金及其制备方法。该高温高熵合金中由W、Ta、Mo、Nb和C等原子比或非等原子比组成。本发明还提供该高温高熵合金的制备方法,包括:1)称取所需重量的W、Ta、Mo、Nb、C原料;2)进行真空电弧熔炼。本发明制备的W‑Ta‑Mo‑Nb‑C高温高熵合金在1800℃仍具有291MPa强度,可用于弥补镍基高温合金1200℃以上温度时强度不足,取代镍基高温合金用于高温结构领域。
-
公开(公告)号:CN118272687A
公开(公告)日:2024-07-02
申请号:CN202410398419.0
申请日:2024-04-03
IPC分类号: C22C1/059 , C22C33/02 , B22F1/16 , B22F10/28 , B22F10/25 , C22C32/00 , C22C19/03 , C22C19/07 , B33Y10/00 , B33Y70/10
摘要: 本发明公开了一种纳米陶瓷颗粒提高增材制造高温合金力学性能的方法,通过添加超高温、高强度的纳米陶瓷颗粒提高增材制造高温合金综合性能,所述纳米陶瓷颗粒为ZrO2、ZrN、ZrC、HfC、HfB2或HfN,所述纳米陶瓷颗粒的尺寸为20nm‑1μm、以0.05%~5%的质量分数存在。本发明提出通过在增材制造高温合金中,添加适量纳米陶瓷颗粒,纳米陶瓷颗粒分解后分布在晶界与晶粒内,同步提升晶界强化以及弥散强化能力,降低增材制造高温合金的裂纹敏感性,抑制成形过程中的凝固与液化裂纹,大幅提升增材制造高温合金的综合力学性能。
-
公开(公告)号:CN118222900A
公开(公告)日:2024-06-21
申请号:CN202410307519.8
申请日:2024-03-18
摘要: 本发明提供了一种陶瓷相增强CoCrNi基中熵合金及制备方法,该CoCrNi基中熵合金的化学式为(CoCrNi)97Mo3‑xTiO2;其中,(CoCrNi)97Mo3部分以原子百分比计;x取1~5,x表示以(CoCrNi)97Mo3的质量百分比计wt.%的TiO2。该中熵合金的制备方法通过将原料混合后使用真空熔炼炉进行熔炼。本发明提供的中熵合金由于Mo元素以及TiO2的加入,所获得的(CoCrNi)97Mo3‑xTiO2的力学性能相对于CoCrNi中熵合金得到了大幅提高,并且耐腐蚀性相对于CoCrNi中熵合金有提升。
-
-
-
-
-
-
-
-
-