一种神经网络模型的对抗鲁棒性评估方法

    公开(公告)号:CN115358315A

    公开(公告)日:2022-11-18

    申请号:CN202211000711.X

    申请日:2022-08-19

    IPC分类号: G06K9/62 G06N3/04

    摘要: 本发明提供一种神经网络模型的对抗鲁棒性评估方法。该方法包括:步骤1:将神经网络模型中的分类器分为非线性部分fh和线性部分ft;步骤2:利用非线性部分fh来定义输入样本的表征向量;以表征向量作为自变量,利用线性部分ft来定义表征向量到各类别的绝对分类边界的距离公式;步骤3:根据输入至神经网络模型的原始样本x随机生成一个对抗样本,并将其作为最初的起始点;步骤4:利用距离公式和梯度下降法对给定的起始点进行优化更新,使得更新后的起始点的表征向量接近各类别的绝对分类边界;步骤5:重复步骤4,直至达到停止条件;步骤6:将最终的起始点作为对抗样本x′,使用攻击算法进行迭代攻击以确定神经网络模型的对抗鲁棒性。