-
公开(公告)号:CN113761756B
公开(公告)日:2022-05-06
申请号:CN202111129554.8
申请日:2021-09-26
Applicant: 中国农业科学院农业资源与农业区划研究所
IPC: G06F30/20
Abstract: 本发明公开一种表面温度高温和低温数据集重构方法,通过对不同天气进行划分,针对不同天气构建不同的近地面气温数据的估算模型计算每天的气温最大值和最小值以及平均气温,然后针对中国不同区域的自然条件构建不同区域的的温度校正模型进一步对最高温和最低以及平均温度进行校正和精度评价,从而构建最高温度、最低温度和平均气温数据集,在此基础上对对最高气温和最低气温的波动趋势分析;本发明区分了晴天和非晴天天气状态,采用多种评价指标对近地面气温的时空变化趋势进行分析,以CMFD数据和ERA5数据集作为再分析数据源,具有较高的空间分辨率和可靠的精度,可准确捕捉区域气温变化情况,便于气候相关分析和其他地表驱动因子的研究。
-
公开(公告)号:CN118916695A
公开(公告)日:2024-11-08
申请号:CN202410957160.9
申请日:2024-07-17
Applicant: 中国农业科学院农业资源与农业区划研究所
IPC: G06F18/214 , G06N3/0442 , G06N3/0464 , G06N3/048 , G06N3/08 , G01W1/10
Abstract: 本发明提出了一种全球干旱时空变化AI预测方法、系统及设备,包括:获取待预测区域的预测因子,其中所述预测因子包括:降水量、潜在蒸散发和地表温度;将所述预测因子输入预设的干旱时空变化预测模型中,获取干旱预测结果;其中,所述干旱时空变化预测模型基于WT‑LSTM模型构建,并基于构建的数据集进行训练获得,所述数据集包括:历史预测因子、历史SPEI指数和对应的历史干旱事件。本发明利用WT‑LSTM模型对综合考虑降水量、地表温度和潜在蒸散发等多因子数据进行深度学习,以预测干旱的趋势变化;从而进行更全面的干旱变化预测。
-
公开(公告)号:CN113761756A
公开(公告)日:2021-12-07
申请号:CN202111129554.8
申请日:2021-09-26
Applicant: 中国农业科学院农业资源与农业区划研究所
IPC: G06F30/20
Abstract: 本发明公开一种表面温度高温和低温数据集重构方法,通过对不同天气进行划分,针对不同天气构建不同的近地面气温数据的估算模型计算每天的气温最大值和最小值以及平均气温,然后针对中国不同区域的自然条件构建不同区域的的温度校正模型进一步对最高温和最低以及平均温度进行校正和精度评价,从而构建最高温度、最低温度和平均气温数据集,在此基础上对对最高气温和最低气温的波动趋势分析;本发明区分了晴天和非晴天天气状态,采用多种评价指标对近地面气温的时空变化趋势进行分析,以CMFD数据和ERA5数据集作为再分析数据源,具有较高的空间分辨率和可靠的精度,可准确捕捉区域气温变化情况,便于气候相关分析和其他地表驱动因子的研究。
-
-