基于机理数据融合的电磁场建模方法、系统、设备及介质

    公开(公告)号:CN117350152A

    公开(公告)日:2024-01-05

    申请号:CN202311278715.9

    申请日:2023-09-28

    IPC分类号: G06F30/27 G06N3/0499

    摘要: 本发明属于深度学习以及电磁场分布建模技术领域,公开了一种基于机理数据融合的电磁场建模方法、系统、设备及介质;所述基于机理数据融合的电磁场建模方法包括以下步骤:基于待电磁场分布建模的变压器,获取电磁场分布建模所需数据;基于获取的所述电磁场分布建模所需数据,利用训练好的物理约束神经网络模型进行预测,获得矢量磁位矩阵预测值;计算获得电磁场量矩阵,进而获得电磁场分布;其中,训练采用的损失函数为基于矢量磁位方程、边界条件、初始条件及数据信息构建的物理约束损失函数。本发明可解决现有传统数值计算方法建模速度慢、效率过低以及目前人工神经网络等传统数据驱动方法可解释性差、可靠性不足的技术问题。