-
公开(公告)号:CN102226737A
公开(公告)日:2011-10-26
申请号:CN201110071290.5
申请日:2011-03-23
申请人: 中国科学院上海技术物理研究所 , 阿旺赛镀膜技术(上海)有限公司
摘要: 本发明公开了一种检测半导体发光二极管一次散热性和二次散热性好坏的方法。本发明提出了基于光谱方法的半导体发光二极管结温与时间依赖关系获得半导体发光二极管一次散热性和二次散热性好坏的新方法。通过光学测量方法得到温度和时间的动态曲线,由两段指数拟合该曲线来获得表征该发光二极管一次散热性和二次散热性好坏的相关系数。本发明可以简单方便的确定半导体发光二极管一次散热性和二次散热性的好坏,对于寻找最优化的封装材料和封装结构,提高发光二极管的热可靠性和节约成本具有重要意义。
-
公开(公告)号:CN102004028A
公开(公告)日:2011-04-06
申请号:CN201010285365.5
申请日:2010-09-17
申请人: 中国科学院上海技术物理研究所 , 阿旺赛镀膜技术(上海)有限公司 , 上海宇豪光电技术有限公司 , 上海半导体照明工程技术研究中心
IPC分类号: G01M11/00
摘要: 本发明公开了一种检测半导体发光二极管封装结构有效散热性的方法。本发明提出了基于光谱方法的半导体发光二极管结温与时间依赖关系获得半导体发光二极管封装结构有效散热性的好坏的新方法。通过光学测量方法得到温度和时间的动态曲线,由指数拟合该曲线来获得表征该封装结构有效散热性的等效散热系数。本发明可以简单方便的确定半导体发光二极管封装结构有效散热性,对于寻找最优化的封装材料和封装结构,提高发光二极管的热可靠性和节约成本具有重要意义。
-
公开(公告)号:CN102136519A
公开(公告)日:2011-07-27
申请号:CN201010564411.5
申请日:2010-11-26
申请人: 中国科学院上海技术物理研究所 , 阿旺赛镀膜技术(上海)有限公司 , 上海中科高等研究院
IPC分类号: H01L31/101 , H01L31/0216 , H01L31/0224 , H01L31/18
CPC分类号: Y02P70/521
摘要: 本发明公开了一种量子阱长波红外探测器光栅波导微腔的光耦合单元。其结构特点是采用金属背反射层、介质层、金属光栅的夹层结构。这种光耦合结构有如下优点:一、采用金属的阵列结构提高了入射光的耦合效率。二、光场被局域在金属光栅层和金属背反射层之间的微小空间内传播,从而大大提高了量子阱层的电场强度。三、采用类似于微带天线结构使得垂直电场分量在纵向方向上具有很好的均匀性。四、金属结构不仅是光耦合单元,同时还充当上下电极。五、易于制备,适合做大面阵光敏元。
-
公开(公告)号:CN102185025B
公开(公告)日:2013-07-24
申请号:CN201110082811.7
申请日:2011-04-01
申请人: 中国科学院上海技术物理研究所 , 上海中科高等研究院 , 阿旺赛镀膜技术(上海)有限公司
IPC分类号: H01L31/18
摘要: 本发明公开了一种用于光电功能器件的金属波导微腔光耦合结构的工艺制程,可以使得光电功能器件的光耦合效率大大提升。本金属波导微腔工艺制程的要点是利用过渡基底材料实现功能器件薄膜的上、下表面金属结构的制备;利用两层石蜡工艺使得功能器件薄膜的制备以及在不同基底材料之间的转移成为可能。本工艺制程具有广泛的通用性,功能器件薄膜的厚度可以从百纳米到百微米,金属光耦合结构的特征尺寸可以从纳米尺度(电子束光刻)到微米尺度(紫外光刻),响应的入射光可以从可见到太赫兹波段。长波量子阱红外探测器的实施实例表明本工艺制程可以优化器件的光谱响应和大大提高器件的红外响应率。
-
公开(公告)号:CN101846499A
公开(公告)日:2010-09-29
申请号:CN201010176138.9
申请日:2010-05-14
申请人: 中国科学院上海技术物理研究所 , 阿旺赛镀膜技术(上海)有限公司 , 上海宇豪光电技术有限公司
IPC分类号: G01B11/06
摘要: 本发明公开了一种薄膜生长中原位弱吸收光学薄膜厚度检测方法。该方法以镀有一层厚度足以引起干涉的打底膜为衬底,通过测量镀膜前后透(反)射谱的变化,即可实现薄膜厚度的测量。由于打底膜的厚度已经引起干涉,新镀上去的待测薄膜即使很薄,也会引起干涉的变化,由镀制待测薄膜前后透(反)射谱干涉的变化就可以很容易地准确测量出待测薄膜的厚度,其测量极限高达3nm以上。该方法可以准确测量纳米超薄膜的厚度,只需测量镀制待测薄膜前后的透(反)射谱,就可以快速获得待测薄膜的厚度,非常简单、快捷,特别适用于镀膜行业的在线检测和实时监控,尤其是对于弱吸收材料超薄膜的厚度测量,本发明方法克服了传统方法测量的困难。
-
公开(公告)号:CN101830644B
公开(公告)日:2012-11-14
申请号:CN201010177547.0
申请日:2010-05-14
申请人: 中国科学院上海技术物理研究所 , 阿旺赛镀膜技术(上海)有限公司 , 上海宇豪光电技术有限公司
摘要: 本发明公开了一种提高汽车镀膜玻璃稳定性的膜系,该膜系与常用的汽车镀膜玻璃膜系的核心总差异是将金属纯银材料改变为银、铜、锌、铬四种金属的合金材料Ag1-x-y-zCuxZnyCrz,其中0≤x+y+z≤10%,Zn能够阻止银与邻近的氧化物层的相互作用,防止膜系性能退化,Cr和Cu能够提高Ag层的化学稳定性,不易受环境的影响。这大大提高了夹胶玻璃在深加工过程的稳定性。另一方面,由于掺杂铜、锌、铬的Ag1-x-y-zCuxZnyCrz合金银的使用,降低了工业大规模生产的成本。本发明中的膜系在可见光透光率75~80%的条件下增加了银膜层的抗氧化、抗机械和化学攻击性,对提高汽车镀膜玻璃的稳定性能有着十分重要的意义。
-
公开(公告)号:CN102226724A
公开(公告)日:2011-10-26
申请号:CN201110071088.2
申请日:2011-03-23
申请人: 中国科学院上海技术物理研究所 , 阿旺赛镀膜技术(上海)有限公司
摘要: 本发明公开了一种内置电源转换电路的LED照明灯具芯片结温的检测方法,本检测方法根据LED材料禁带宽度随温度的变化规律和在开启灯具电源后封装在灯具内芯片升温规律来确定LED灯具中LED芯片结温。本发明给出了具体的测量过程和测量效果。本发明方法的优点是可以直接对市场上LED产品进行检测,这类产品往往都是有内置电源转换电路的,这类电路使得常规方法需要把脉冲电源加载到灯具上的要求不能被满足。本发明就是解决了其他测量方法中需要使用特定的外部驱动电源从而与灯具内置电源转换电路相互不匹配的困难,实现了可以对市场上LED灯具产品在无需作任何变动条件下直接检测的手段。
-
公开(公告)号:CN102185025A
公开(公告)日:2011-09-14
申请号:CN201110082811.7
申请日:2011-04-01
申请人: 中国科学院上海技术物理研究所 , 上海中科高等研究院 , 阿旺赛镀膜技术(上海)有限公司
IPC分类号: H01L31/18
摘要: 本发明公开了一种用于光电功能器件的金属波导微腔光耦合结构的工艺制程,可以使得光电功能器件的光耦合效率大大提升。本金属波导微腔工艺制程的要点是利用过渡基底材料实现功能器件薄膜的上、下表面金属结构的制备;利用两层石蜡工艺使得功能器件薄膜的制备以及在不同基底材料之间的转移成为可能。本工艺制程具有广泛的通用性,功能器件薄膜的厚度可以从百纳米到百微米,金属光耦合结构的特征尺寸可以从纳米尺度(电子束光刻)到微米尺度(紫外光刻),响应的入射光可以从可见到太赫兹波段。长波量子阱红外探测器的实施实例表明本工艺制程可以优化器件的光谱响应和大大提高器件的红外响应率。
-
公开(公告)号:CN103243885B
公开(公告)日:2015-07-29
申请号:CN201310148800.3
申请日:2013-04-26
申请人: 中国科学院上海技术物理研究所
摘要: 本发明公开了一种低成本颜色可调的低辐射窗槛墙膜系及其制备方法。该膜系自透明基底向上依次包括镀制在透明基底上的下层氮化硅薄膜、可见光吸收薄膜、金属薄膜以及上层氮化硅保护膜。本发明的膜系在可见光范围对太阳光的平均反射率在5%~30%,而辐射率小于10%。同时本发明的膜系在保持对可见光低反射、红外低辐射率前提下,还具有外观颜色可按需求进行调节的特点,丰富多彩的外观颜色可更好地实现了窗槛墙对建筑的美化效果。由于采用了上、下层氮化硅保护膜夹心结构,本发明的膜系还具备可钢化特性。本发明的颜色可调的低辐射窗槛墙膜系可直接通过工业化磁控溅射制备方法在大面积透明基底上连续镀制,易于实现低成本、大规模工业化生产。
-
公开(公告)号:CN103017383B
公开(公告)日:2014-08-13
申请号:CN201210506859.0
申请日:2012-11-30
申请人: 中国科学院上海技术物理研究所
摘要: 本发明公开了一种颜色可调的太阳能选择性吸收膜系及其制备方法。该颜色可调节的太阳能选择性吸收膜系自下而上依次包括镀制在金属衬底上的氮氧化钛薄膜、二氧化钛薄膜、氮化硅薄膜以及二氧化硅薄膜。本发明的吸收膜系对太阳能的吸收率大于96%,发射率小于4%,具有光热转换效率高和集热效率高以及颜色可调的特点。本发明的吸收膜系具有在保持良好吸收率和发射率的前提下,调节外观颜色的特点,丰富多彩的外观颜色可更好地实现太阳能集热产品与建筑一体化,满足太阳能热水器、太阳能空调等光热产品的美观、多样和个性化需求。本发明的吸收膜系可直接通过工业化磁控溅射制备方法在大面积衬底上连续镀制,易于实现大规模工业化生产。
-
-
-
-
-
-
-
-
-