-
公开(公告)号:CN111004626B
公开(公告)日:2023-01-03
申请号:CN201911148483.9
申请日:2019-11-21
Applicant: 中国科学院苏州生物医学工程技术研究所
Abstract: 本发明公开了一种用于氰根离子检测的比率型荧光探针,该探针为修饰有Cy3 NHS ester的碳点。本发明公开的比率型荧光探针的制备方法,包括以下步骤:1)制备碳点;2)在制得的碳点表面修饰Cy3 NHS ester。本发明还公开了一种氰根离子检测方法。本发明结合了碳点和反应型探针的优势,设计了基于FRET机理的碳点/染料复合探针(CD‑Cy3 NHS ester),能用于检测氰根离子浓度。该探针具有灵敏度高、特异性好等特点。
-
公开(公告)号:CN111303870A
公开(公告)日:2020-06-19
申请号:CN202010129150.8
申请日:2020-02-28
Applicant: 中国科学院苏州生物医学工程技术研究所 , 济南国科医工科技发展有限公司
Abstract: 本发明公开了一种用于孕酮检测的碳点荧光探针及其制备方法,所述碳点荧光探针的表面具有氨基官能团,且本身具有黄色荧光。本发明还公开了一种孕酮检测方法。本发明采用表面具有氨基官能团的碳点作为孕酮检测的探针,基于氧化还原实现孕酮检测,氨基官能团的存在使碳点本身具有黄色荧光,加入氧化剂后氨基官能团悔被氧化为硝基,使碳点自身的荧光淬灭,再加入孕酮时,孕酮的还原性将碳点表面的硝基还原为氨基,从而使碳点的荧光恢复,通过测量碳点荧光探针荧光恢复后的荧光强度得到待检测的孕酮溶液的浓度;本发明所制备的碳点荧光探针灵敏度高,特异性好等优点,且制备方法简单检测过程方便,适合开发成试剂盒,用于临床检测。
-
公开(公告)号:CN110964520A
公开(公告)日:2020-04-07
申请号:CN201911149401.2
申请日:2019-11-21
Applicant: 中国科学院苏州生物医学工程技术研究所
Abstract: 本发明公开了一种用于钙离子检测的碳点荧光探针及其制备方法,该碳点荧光探针包括碳点以及修饰在所述碳点上的乙二醇双(2-氨基乙基醚)四乙酸。其制备方法包括以下步骤:1)制备碳点;2)向制得的碳点中加入乙二醇双(2-氨基乙基醚)四乙酸,获得修饰有乙二醇双(2-氨基乙基醚)四乙酸的碳点,即为所述用于钙离子检测的碳点荧光探针。本发明的用于钙离子检测的碳点荧光探针,能够检测细胞内的钙离子浓度,本发明的方法制备的碳点钙离子探针具有原料廉价、制备过程简单安全等优势,适合大规模生产。
-
公开(公告)号:CN116217473A
公开(公告)日:2023-06-06
申请号:CN202310204608.5
申请日:2023-03-06
Applicant: 重庆国科医创科技发展有限公司 , 中国科学院苏州生物医学工程技术研究所
IPC: C07D213/79 , C07D213/803 , C09K11/06 , G01N21/64
Abstract: 本发明公开了一种稀土铕联吡啶配合物荧光探针,其具有如下式(I)所示的化学结构式:其通过以下方法制备得到:S1、将2,2':6',2"‑三联吡啶‑4‑甲酸溶解于无水乙醇中,搅拌;S2、向步骤S1得到的溶液中加入铕盐的乙醇溶液,加热下搅拌反应;S3、将步骤S2所得固体产物使用乙醇重结晶,然后洗涤,冷冻干燥,得到所述稀土铕联吡啶配合物荧光探针。本发明以2,2':6',2"‑三联吡啶‑4‑甲酸和EuCl3﹒6H2O为原料,采用一步反应法制得荧光发射在617nm左右的稀土铕联吡啶配合物,相比于现有稀土铕联吡啶配合物的制备方法,具有操作简便、快捷,合成成本低等特点,更利于实现规模化生产。
-
公开(公告)号:CN115125000A
公开(公告)日:2022-09-30
申请号:CN202210847011.8
申请日:2022-07-06
Applicant: 重庆国科医创科技发展有限公司 , 中国科学院苏州生物医学工程技术研究所
Abstract: 本发明公开了一种红光发射碳量子点的制备方法及该碳量子点的应用,该制备方法包括以下步骤:1)将4‑氯‑1,2‑苯二胺溶解在去离子水中,超声至溶液澄清;2)加入盐酸溶液,将得到的混合溶液转移到高压釜中,加热下反应;3)反应结束后冷却至室温,得到中间产物溶液,采用柱层析法对中间产物溶液进行纯化,得到最终产物溶液;4)最终产物溶液干燥,得到所述红光发射碳量子点。本发明提供的红光发射碳量子点的制备方法制备得到的红色荧光碳量子点,能应用于体外和细胞层面对茶多酚含量的检测;同时,借由其低生物毒性、水溶性好和具有明亮红色荧光的特性,还可作为红色荧光染料用于荧光成像;本发明的制备方法简单,可实现规模化生产。
-
公开(公告)号:CN115125000B
公开(公告)日:2023-11-03
申请号:CN202210847011.8
申请日:2022-07-06
Applicant: 重庆国科医创科技发展有限公司 , 中国科学院苏州生物医学工程技术研究所
Abstract: 本发明公开了一种红光发射碳量子点的制备方法及该碳量子点的应用,该制备方法包括以下步骤:1)将4‑氯‑1,2‑苯二胺溶解在去离子水中,超声至溶液澄清;2)加入盐酸溶液,将得到的混合溶液转移到高压釜中,加热下反应;3)反应结束后冷却至室温,得到中间产物溶液,采用柱层析法对中间产物溶液进行纯化,得到最终产物溶液;4)最终产物溶液干燥,得到所述红光发射碳量子点。本发明提供的红光发射碳量子点的制备方法制备得到的红色荧光碳量子点,能应用于体外和细胞层面对茶多酚含量的检测;同时,借由其低生物毒性、水溶性好和具有明亮红色荧光的特性,还可作为红色荧光染料用于荧光成像;本发明的制备方法简单,可实现规模化生产。
-
公开(公告)号:CN113528134A
公开(公告)日:2021-10-22
申请号:CN202110792899.5
申请日:2021-07-14
Applicant: 苏州国科医工科技发展(集团)有限公司 , 中国科学院苏州生物医学工程技术研究所
Abstract: 本发明公开了一种纳米荧光探针、其制备方法及应用,该纳米荧光探针通过以下方法制备得到:1)将柠檬酸三钠、FeCl3和乙二胺共同溶于乙二醇中,超声搅拌至溶液澄清;2)将混合液转移至聚四氟乙烯为内衬的反应釜中,加热条件下反应;3)反应结束后,冷却至室温,离心,然后用旋转蒸发仪去除乙二醇;4)将溶液用透析袋透析,收集透析袋内溶液,冷冻干燥,得到纯化的碳量子点,即为所述纳米荧光探针。本发明的碳量子点具有制备方法简单、水溶性好、生物相容性好、无毒副作用等特点,可实现规模化生产;本发明提供的血晶素的检测方法,通过碳量子点荧光强度的变化,能有效检测血晶素浓度。该方法具有操作简便、精确度高、选择型好等优点。
-
公开(公告)号:CN111303870B
公开(公告)日:2021-06-01
申请号:CN202010129150.8
申请日:2020-02-28
Applicant: 中国科学院苏州生物医学工程技术研究所 , 济南国科医工科技发展有限公司
Abstract: 本发明公开了一种用于孕酮检测的碳点荧光探针及其制备方法,所述碳点荧光探针的表面具有氨基官能团,且本身具有黄色荧光。本发明还公开了一种孕酮检测方法。本发明采用表面具有氨基官能团的碳点作为孕酮检测的探针,基于氧化还原实现孕酮检测,氨基官能团的存在使碳点本身具有黄色荧光,加入氧化剂后氨基官能团悔被氧化为硝基,使碳点自身的荧光淬灭,再加入孕酮时,孕酮的还原性将碳点表面的硝基还原为氨基,从而使碳点的荧光恢复,通过测量碳点荧光探针荧光恢复后的荧光强度得到待检测的孕酮溶液的浓度;本发明所制备的碳点荧光探针灵敏度高,特异性好等优点,且制备方法简单检测过程方便,适合开发成试剂盒,用于临床检测。
-
公开(公告)号:CN116875301A
公开(公告)日:2023-10-13
申请号:CN202310839421.2
申请日:2023-07-10
Applicant: 中国科学院苏州生物医学工程技术研究所
Abstract: 本发明公开了一种一种多色可调余辉硅基纳米点、其制备方法及应用,该方法包括以下步骤:S1、取尿素用超纯水溶解,再加入前驱体,搅拌均匀;S2、加热下反应,反应结束后冷却至室温,磨粉,洗涤,干燥,得到多色可调余辉硅基纳米点;其中,所述前驱体为硅烷或者为硅烷与罗丹明的混合物。本发明成功制备得到了四种多色硅基纳米点余辉材料,四种材料不仅光学性质稳定,而且可以实现同一激发光源下(365nm)发射四种不同的余辉颜色;利用该四种材料基于关闭紫外照射后的余辉发射特性,能够实现光学防伪和5D信息加密,具有多色可调、信息加密等级高等优点,为防伪应用提供了更高的安全性和更多的选择性。
-
公开(公告)号:CN120005606A
公开(公告)日:2025-05-16
申请号:CN202510151329.6
申请日:2025-02-11
Applicant: 中国科学院苏州生物医学工程技术研究所
Abstract: 本发明公开了一种红色荧光硅纳米点、其制备方法及应用,该方法包括以下步骤:S1、称取磺基罗丹明101,加超纯水溶解,再加入N‑(2‑氨乙基)‑3‑氨丙基三甲氧基硅烷,搅拌均匀,所得混合物转移至反应釜中,加热反应;S2、反应结束后冷却到室温,所得产物用硅胶层析柱纯化,采用洗脱液洗脱,收集洗脱液最终,冷冻干燥,得到红色荧光硅纳米点。相比于常见的蓝绿色荧光,红色荧光发射有更深的组织穿透性和抗背景荧光干扰的能力;本发明提供的硅纳米点不仅具有优异的光稳定性和高量子产率,而且还具有类似亲脂性阳离子的特性,可以特异性靶向活细胞内的线粒体;此外,该硅纳米点还在斑马鱼胚胎和幼鱼体内表现出优异的成像能力。
-
-
-
-
-
-
-
-
-