一种基于海杂波信号与人工智能技术的海面波浪反演方法

    公开(公告)号:CN117849745B

    公开(公告)日:2024-10-18

    申请号:CN202311320588.4

    申请日:2023-10-12

    摘要: 本发明公开了一种基于海杂波信号与人工智能技术的海面波浪反演方法,包括基于随机波浪模型生成随机波浪样本集,基于海杂波生成模型生成对应的海杂波信号,构建衰减函数,根据衰减函数对海杂波信号进行衰减处理,获取所有随机波浪对应的衰减后的海杂波信号集,根据随机波浪样本集与海杂波信号集构建数据库,将数据库划分为训练集和测试集,构建PIX2PIX神经网络模型,对PIX2PIX神经网络模型进行训练与测试,获取待反演的海杂波信号,根据训练后的PIX2PIX神经网络模型获取待反演的海杂波信号所对应的三维波面信息。相比于传统的GAN网络模型而言,能够更快更准确的捕捉输入输出信号之间的关系,即能够更加准确还原经过阴影调制的回波信号,计算效率更高。

    一种基于海杂波信号与人工智能技术的海面波浪反演方法

    公开(公告)号:CN117849745A

    公开(公告)日:2024-04-09

    申请号:CN202311320588.4

    申请日:2023-10-12

    摘要: 本发明公开了一种基于海杂波信号与人工智能技术的海面波浪反演方法,包括基于随机波浪模型生成随机波浪样本集,基于海杂波生成模型生成对应的海杂波信号,构建衰减函数,根据衰减函数对海杂波信号进行衰减处理,获取所有随机波浪对应的衰减后的海杂波信号集,根据随机波浪样本集与海杂波信号集构建数据库,将数据库划分为训练集和测试集,构建PIX2PIX神经网络模型,对PIX2PIX神经网络模型进行训练与测试,获取待反演的海杂波信号,根据训练后的PIX2PIX神经网络模型获取待反演的海杂波信号所对应的三维波面信息。相比于传统的GAN网络模型而言,能够更快更准确的捕捉输入输出信号之间的关系,即能够更加准确还原经过阴影调制的回波信号,计算效率更高。