-
公开(公告)号:CN117095240A
公开(公告)日:2023-11-21
申请号:CN202311332316.6
申请日:2023-10-16
申请人: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC分类号: G06V10/764 , G06V10/44 , G06V10/42 , G06V10/26 , G06V10/82 , G06N3/0464 , G06N3/094
摘要: 一种基于细粒度特征的叶片分类方法和系统,其方法包含:叶片图像随机混乱模块对同一类的两张叶片图像分区块之后,再把所有区块进行随机重组,得到两张相同数量和尺寸的重组叶片图像,以混乱叶片的全局特征;使用深度学习网络提取叶片的原图特征和重组图特征:训练时,在特征层后面加全连接层,并计算分类损失和对抗损失向前传播;测试时,使用模型便可以提取原图的局部细粒度特征和全局特征,从而实现对叶片的分类。本发明对叶片图像进行重组,模型在重组图像上得不到全局特征时,将专注于学习叶片的局部细粒度特征,而原始图像的输入又可以提供模型全局特征的学习,从而大大提高叶片分类的精度。
-
公开(公告)号:CN117079060A
公开(公告)日:2023-11-17
申请号:CN202311325300.2
申请日:2023-10-13
申请人: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC分类号: G06V10/764 , G06V10/774 , G06V10/25 , G06V20/40 , G06V10/82 , G06N3/0442 , G06N3/0464 , G06N3/045
摘要: 一种基于光合信号的叶片智能分类方法和系统,其方法包含:叶片光合信号提取、叶片光合信号分类。叶片光合信号提取通过叶片检测模型提取出视频中的叶片,使用分割算法对提取出的叶片进行分割,从而分割出叶片区块,然后以叶片区块内的像素均值记为当前帧的光合信号值,视频的多帧连续光合信号值即组成此叶片的光合信号。叶片光合信号分类使用神经网络对采集到的叶片光合信号进行特征提取训练,来实现叶片的分类。本发明提出一种基于植物叶片的光合信号,确定其提取方法,并针对植物叶片的光合信号变化,采用深度学习训练的方式,提取出植物叶片与其光合信号变化的相关性,从而大大提高叶片分类的精度。
-
公开(公告)号:CN117079060B
公开(公告)日:2024-03-12
申请号:CN202311325300.2
申请日:2023-10-13
申请人: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC分类号: G06V10/764 , G06V10/774 , G06V10/25 , G06V20/40 , G06V10/82 , G06N3/0442 , G06N3/0464 , G06N3/045
摘要: 一种基于光合信号的叶片智能分类方法和系统,其方法包含:叶片光合信号提取、叶片光合信号分类。叶片光合信号提取通过叶片检测模型提取出视频中的叶片,使用分割算法对提取出的叶片进行分割,从而分割出叶片区块,然后以叶片区块内的像素均值记为当前帧的光合信号值,视频的多帧连续光合信号值即组成此叶片的光合信号。叶片光合信号分类使用神经网络对采集到的叶片光合信号进行特征提取训练,来实现叶片的分类。本发明提出一种基于植物叶片的光合信号,确定其提取方法,并针对植物叶片的光合信号变化,采用深度学习训练的方式,提取出植物叶片与其光合信号变化的相关性,从而大大提高叶片分类的精度。
-
公开(公告)号:CN116992919B
公开(公告)日:2023-12-19
申请号:CN202311269915.8
申请日:2023-09-28
申请人: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC分类号: G06N3/042 , G06N3/0464 , G06N3/0499 , G06N3/084 , G16B40/00 , G06F18/213 , G06F18/22
摘要: 本发明公开了一种基于多组学的植物表型预测方法和装置,该方法基于图卷积神经网络,将多组学如基因组、转录组、代谢组的数据作为图节点,不同组学之间的关联程度作为图的边来构建每个植株的图结构数据,将构建的图结构数据输入图卷积神经网络中,提取节点特征,通过Transformer网络更新节点特征,节点特征拼接后输入全连接层,输出表型预测值,利用整个图结构融合多组学特征实现表型的预测。本发明创新性的利用图卷积神经网络结合Transformer网络实现基因到表型的预测,并利用多组学构建图结构融合多组学数据实现精准表型预测,在一定程度上解决只用单一组学表型预测不准的问题,
-
公开(公告)号:CN116797904A
公开(公告)日:2023-09-22
申请号:CN202310444502.2
申请日:2023-04-24
申请人: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC分类号: G06V10/82 , G06V10/774 , G06N3/08 , G06N3/0464 , G06V10/74 , G06V10/764 , G06N5/02
摘要: 本发明公开一种图像识别不确定性知识蒸馏方法与系统,收集有标签训练图像样本;选定第一神经网络模型,使用训练图像样本进行训练,得到训练好的第一神经网络模型,输入训练样本图像得到第一神经网络模型中间层样本特征表达及输出的软标签信息;选定第二神经网络模型,对训练图像样本进行处理,得到中间层样本特征表达,与第一神经网络模型的中间层样本特征表达进行不确定性建模,得到第一损失函数;使用第一神经网络模型输出的软标签信息及训练图像样本,联合第一损失函数,更新第二神经网络模型的参数,得到训练好的第二神经网络模型,同时利用本发明第二神经网络模型对待处理图像进行图像识别处理,提高图像识别的准确度。
-
公开(公告)号:CN116994154A
公开(公告)日:2023-11-03
申请号:CN202311092395.8
申请日:2023-08-29
申请人: 之江实验室 , 中国科学院东北地理与农业生态研究所
摘要: 本发明涉及无人机应用技术领域,具体公开了一种基于无人机的大豆苗期特征获取方法及系统,所述方法包括向地图服务发送卫星图获取请求,获取大豆种植区的卫星图;对所述卫星图进行识别,确定区域分隔线,根据所述区域分隔线建立检测路径;将检测路径向无人机组合发送,实时获取无人机组合的运动参数,根据运动参数确定大豆苗期特征;其中,所述无人机组合在检测路径上运动时,实时获取种植区图像,对种植区图像进行识别,根据识别结果实时调节运动参数。本发明将数据识别过程内置于无人机,通过定位器获取无人机的运动参数即可快速判定期苗特征,此外,还可以通过参数差定位可能存在缺陷的点,处理的源数据仅为位置信息,识别效率较高。
-
公开(公告)号:CN116884481A
公开(公告)日:2023-10-13
申请号:CN202310697601.1
申请日:2023-06-13
申请人: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC分类号: G16B20/30 , G06N3/0464 , G06N3/0895 , G16B20/00
摘要: 一种基于图卷积神经网络与自监督重构学习的基因到表型预测方法和系统,该方法基于图卷积神经网络的方法,将每个品种的大豆作为图节点,大豆的基因序列为节点的特征,利用每个品种大豆之间的亲缘关系作为图的边,将构建的图输入图卷积神经网络与自监督重构网络中,更新节点特征,实现大豆基因到表型的预测。本发明创新性的利用图卷积神经网络实现基因到表型的预测,利用自监督学习降低基因维度,并将品种之间的亲缘关系作为先验关联不同品种指导基因到表型挖掘,提高表型预测的效果。
-
公开(公告)号:CN116580767B
公开(公告)日:2024-03-12
申请号:CN202310461742.3
申请日:2023-04-26
申请人: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC分类号: G16B20/50 , G16B40/00 , G06N3/044 , G06N3/0455 , G06N3/048 , G06N3/047 , G06N3/084 , G06N3/082
摘要: 一种基于自监督与Transformer的基因表型预测方法,通过基因芯片技术和人工测量分别获取农作物SNP数据及对应表型样本,以构建数据集;首先,将SNP数据预处理及编码后,送入自监督模型,并通过DeepLIFT算法,计算各SNP位点对表型的贡献得分;然后,使用该SNP各位点贡献度得分改进Transformer嵌入编码方式,并结合自注意力机制,有效提取基因与表型相关性特征图;最后将特征图送入预测回归头预测表型值。本发明还包括一种基于自监督与Transformer的基因表型预测系统。本发明使Transformer模型获取SNP位点贡献度先验知识,更关注贡献度高的位点,减少维度干扰,有效提高预测准确度,适用于农作物基因表型预测。
-
公开(公告)号:CN117036829A
公开(公告)日:2023-11-10
申请号:CN202311278518.7
申请日:2023-10-07
申请人: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC分类号: G06V10/764 , G06V10/774 , G06V10/82 , G06V10/74 , G06N3/0464 , G06N3/08
摘要: 一种基于原型学习实现标签增强的叶片细粒度识别方法和系统,包括:构建细粒度叶片分类数据集;将训练图像输入模型并得到最后一层卷积网络输出的特征向量,按照图像类别标签获取每个类的平均特征值;将训练图像输入上述卷积网络,计算其在最后一个卷积层输出的向量与所有原型特征的相似度;将上述相似度结果与输入图像的真实标签进行加权融合,获得软标签;根据输入图像的真实标签,对原型特征库中对应的原型向量进行迭代更新;获取输入图像经过网络分类层输出的预测标签;将预测标签与软标签进行相似度计算,作为损失函数指导整个系统的训练;将待测图像输入训练完成的网络进行分类预测,根据预测的标签分布确定图像类别。
-
公开(公告)号:CN116992919A
公开(公告)日:2023-11-03
申请号:CN202311269915.8
申请日:2023-09-28
申请人: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC分类号: G06N3/042 , G06N3/0464 , G06N3/0499 , G06N3/084 , G16B40/00 , G06F18/213 , G06F18/22
摘要: 本发明公开了一种基于多组学的植物表型预测方法和装置,该方法基于图卷积神经网络,将多组学如基因组、转录组、代谢组的数据作为图节点,不同组学之间的关联程度作为图的边来构建每个植株的图结构数据,将构建的图结构数据输入图卷积神经网络中,提取节点特征,通过Transformer网络更新节点特征,节点特征拼接后输入全连接层,输出表型预测值,利用整个图结构融合多组学特征实现表型的预测。本发明创新性的利用图卷积神经网络结合Transformer网络实现基因到表型的预测,并利用多组学构建图结构融合多组学数据实现精准表型预测,在一定程度上解决只用单一组学表型预测不准的问题,提高了表型预测的效果。
-
-
-
-
-
-
-
-
-