-
公开(公告)号:CN114528195A
公开(公告)日:2022-05-24
申请号:CN202210033661.9
申请日:2022-01-12
Applicant: 北京交通大学 , 中国国家铁路集团有限公司 , 中国铁道科学研究院集团有限公司电子计算技术研究所
Abstract: 本发明实施属于铁路信息系统安全技术领域,具体涉及铁路系统开源软件的分层分类定量风险评估方法。该方法主要包括:扫描信息系统中开源软件源代码库;获取有依赖开源软件的风险评估值out1;获取无依赖开源软件的风险评估值out2;根据协议权重λ和代码权重μ对out1和out2进行加权平均化处理;加权平均化处理为val=λ*out1+μ*out2;获取开源软件的风险评估值val。该值越大,在当前系统中使用该软件需面临的风险就越大。本发明基于树结构,采取分层分类的方式对铁路系统中所使用的开源软件进行定量风险评估,得到了比传统方法更可靠全面的评估结果。
-
公开(公告)号:CN114362994B
公开(公告)日:2023-01-06
申请号:CN202111418689.6
申请日:2021-11-26
Applicant: 北京交通大学 , 中国国家铁路集团有限公司
Abstract: 本发明实施属于铁路信息系统安全技术领域,具体涉及多层异粒度智能聚合铁路系统运行行为安全风险识别方法。该方法主要包括:首先利用静态阈值对设备性能数据进行判断,筛选出异常的性能项目,由异常的性能项目分别基于网络攻击聚合规则和网络拓扑聚合规则得到需要聚合分析的多源日志数据集合并且给每条日志设置好相应的网络攻击权重q,将它们依次作为现有神经网络的输入,并且对相应的输出结果进行加权平均化处理,得到风险等级预测数值,该值越大,当前系统面临的网络安全风险就越大。本发明使用了关联规则与深度学习技术相结合的方式,综合考虑了多方面因素,达到了比传统方法更高的效率。
-
公开(公告)号:CN114362994A
公开(公告)日:2022-04-15
申请号:CN202111418689.6
申请日:2021-11-26
Applicant: 北京交通大学 , 中国国家铁路集团有限公司
Abstract: 本发明实施属于铁路信息系统安全技术领域,具体涉及多层异粒度智能聚合铁路系统运行行为安全风险识别方法。该方法主要包括:首先利用静态阈值对设备性能数据进行判断,筛选出异常的性能项目,由异常的性能项目分别基于网络攻击聚合规则和网络拓扑聚合规则得到需要聚合分析的多源日志数据集合并且给每条日志设置好相应的网络攻击权重q,将它们依次作为现有神经网络的输入,并且对相应的输出结果进行加权平均化处理,得到风险等级预测数值,该值越大,当前系统面临的网络安全风险就越大。本发明使用了关联规则与深度学习技术相结合的方式,综合考虑了多方面因素,达到了比传统方法更高的效率。
-
-