-
公开(公告)号:CN112988723B
公开(公告)日:2024-07-16
申请号:CN202110182167.4
申请日:2021-02-09
Applicant: 北京工业大学
IPC: G06F16/215 , G06N3/042 , G06N3/0442 , G06N3/045 , G06N3/0464 , G06N3/084
Abstract: 本发明公开了一种基于空间自注意力图卷积循环神经网络的交通数据修复方法,全连接层作为输入层将输入映射到一个高维空间提高模型的表达能力;双向图卷积门控循环单元是将门控循环单元中的全连接层替换为图卷积得到的,它能够同时建模局部空间相关性和时间相关性;多头空间自注意力模块用于捕获路网的隐含空间相关性,同时还能从全局聚合各个节点的信息;卷积层作为输出层用于对特征维度进行衰减。本发明利用图卷积建模局部空间相关性;利用门控循环单元学习交通数据的动态变化,捕获时间相关性;此外,考虑到交通状况受到许多潜在因素的影响,本发明采用多头空间自注意力机制从全局来建模交通数据的隐含空间相关性。
-
公开(公告)号:CN112988723A
公开(公告)日:2021-06-18
申请号:CN202110182167.4
申请日:2021-02-09
Applicant: 北京工业大学
IPC: G06F16/215 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种基于空间自注意力图卷积循环神经网络的交通数据修复方法,全连接层作为输入层将输入映射到一个高维空间提高模型的表达能力;双向图卷积门控循环单元是将门控循环单元中的全连接层替换为图卷积得到的,它能够同时建模局部空间相关性和时间相关性;多头空间自注意力模块用于捕获路网的隐含空间相关性,同时还能从全局聚合各个节点的信息;卷积层作为输出层用于对特征维度进行衰减。本发明利用图卷积建模局部空间相关性;利用门控循环单元学习交通数据的动态变化,捕获时间相关性;此外,考虑到交通状况受到许多潜在因素的影响,本发明采用多头空间自注意力机制从全局来建模交通数据的隐含空间相关性。
-
公开(公告)号:CN112801404B
公开(公告)日:2024-03-22
申请号:CN202110186065.X
申请日:2021-02-14
Applicant: 北京工业大学
IPC: G06Q10/04 , G06Q50/40 , G06F18/214 , G06N3/042 , G06N3/0464 , G06N3/08
Abstract: 一种基于自适应空间自注意力图卷积的交通预测方法属于交通领域和深度学习领域,提出一种自适应空间自注意力图卷积网络(ASSAGCN)用于交通预测。ASSAGCN的由2个残差块堆叠而成。每个残差块由一个图卷积模块(GCN)、一个多头空间自注意力模块(MHSSA)、一个门控融合模块(GF)和一个多感受野空洞因果卷积模块(MRDCC)构成。其中GCN基于连通性对路网的局部空间相关性进行建模;MHSSA用于捕获路网的隐含空间相关性,同时还能从全局聚合各个节点的信息;GF对GCN和MHSSA的输出进行融合;MRDCC用于建模时间相关性。输入层采用一个简单的全连接层将输入映射到一个高维空间提高模型的表达能力,输出层采用2个1×1的卷积层。本发明能够捕获到路网中潜在的空间相关性,适应路网结构的动态变化。
-
公开(公告)号:CN112801404A
公开(公告)日:2021-05-14
申请号:CN202110186065.X
申请日:2021-02-14
Applicant: 北京工业大学
Abstract: 一种基于自适应空间自注意力图卷积的交通预测方法属于交通领域和深度学习领域,提出一种自适应空间自注意力图卷积网络(ASSAGCN)用于交通预测。ASSAGCN的由2个残差块堆叠而成。每个残差块由一个图卷积模块(GCN)、一个多头空间自注意力模块(MHSSA)、一个门控融合模块(GF)和一个多感受野空洞因果卷积模块(MRDCC)构成。其中GCN基于连通性对路网的局部空间相关性进行建模;MHSSA用于捕获路网的隐含空间相关性,同时还能从全局聚合各个节点的信息;GF对GCN和MHSSA的输出进行融合;MRDCC用于建模时间相关性。输入层采用一个简单的全连接层将输入映射到一个高维空间提高模型的表达能力,输出层采用2个1×1的卷积层。本发明能够捕获到路网中潜在的空间相关性,适应路网结构的动态变化。
-
-
-