-
公开(公告)号:CN111461257B
公开(公告)日:2024-05-28
申请号:CN202010337201.6
申请日:2020-04-24
Applicant: 北京工业大学
IPC: G06V10/762
Abstract: 本发明公开了一种基于乘积Grassmann流形的多视点视频数据的共享‑差异表示(PGM‑CER)聚类分析方法,用于解决传统多视聚类方法无法将多视数据中的共享和差异信息分离开来、不适用于具有复杂非线性结构的多维数据的问题。本方法中,聚类过程分为三部分,首先,用乘积Grassmann流形来表示多视点视频,再将共享‑差异表示从欧氏空间扩展到乘积Grassmann流形空间;然后,建立PGM‑CER模型,在全局约束下学习其共享‑差异信息;最终,实现多视点视频聚类。直接求解流形上的优化问题比较困难,本方法通过流形空间与欧氏空间的映射求解最优解,简化了学习过程,效果显著优于其他经典多视聚类方法。
-
公开(公告)号:CN112884822B
公开(公告)日:2024-03-15
申请号:CN202110179042.6
申请日:2021-02-09
Applicant: 北京工业大学
Abstract: 本发明公开了一种基于RepNet模型的人体多视角图像序列的骨架提取方法,基于沙漏网络的二维骨架提取方法和基于RepNet的三维骨架提取方法来提取初始的多视角三维骨架序列。将多视角骨架序列通过基于最小二乘的配准融合方法得到融合后的优化序列,最后利用帧间帧内优化模型对连续帧三维骨架序列进行优化,得到最终优化后的骨架序列;本发明利用三维融合的可扩展性,把得到的多视图三维骨架进行配准融合优化,然后得到更准确的三维骨架序列,能很好的表达运动形态。
-
公开(公告)号:CN114693788A
公开(公告)日:2022-07-01
申请号:CN202210303798.1
申请日:2022-03-24
Applicant: 北京工业大学
Abstract: 本发明公开了一种基于视角变换的正面人体图像生成方法,用于解决在无需输入目标姿态的情况下,从人体侧面视角图像生成正面视角图像的问题。本方法首先通过FP‑Net获取人体正面姿态作为网络的目标姿态。然后,将人体图像和姿态输入到生成器,更新人体的外观和形态特征。最后,将生成的正面人体图像输入到鉴别器中,帮助生成具有真实感的正面人体图像。实验结果表明,该模型可以生成具有较好的外观一致性和形态一致性的正面人体图像。
-
公开(公告)号:CN112926449A
公开(公告)日:2021-06-08
申请号:CN202110210298.9
申请日:2021-02-11
Applicant: 北京工业大学
Abstract: 一种基于任意角度人体图像的正面姿态估计方法属于计算机视觉领域,本发明包括一种多角度人体图像数据集的制作以及针对所提出数据集进行二维人体图像的正面姿态估计的算法设计两部分。数据集制作部分主要通过设计一整套数据的采集和数据的处理的方法,通过数据集的制作为算法设计提供数据支持。算法设计部分主要是通过对目前主流的深度学习算法进行改进,以实现任意角度人体图像的正面姿态估计。本发明可以完成任意角度图像的正面姿态估计,即使对人体自遮挡非常严重的背面图像,或者有部分人体缺失侧面图像也可以有较好的表现。
-
公开(公告)号:CN111461257A
公开(公告)日:2020-07-28
申请号:CN202010337201.6
申请日:2020-04-24
Applicant: 北京工业大学
IPC: G06K9/62
Abstract: 本发明公开了一种基于乘积Grassmann流形的多视点视频数据的共享-差异表示(PGM-CER)聚类分析方法,用于解决传统多视聚类方法无法将多视数据中的共享和差异信息分离开来、不适用于具有复杂非线性结构的多维数据的问题。本方法中,聚类过程分为三部分,首先,用乘积Grassmann流形来表示多视点视频,再将共享-差异表示从欧氏空间扩展到乘积Grassmann流形空间;然后,建立PGM-CER模型,在全局约束下学习其共享-差异信息;最终,实现多视点视频聚类。直接求解流形上的优化问题比较困难,本方法通过流形空间与欧氏空间的映射求解最优解,简化了学习过程,效果显著优于其他经典多视聚类方法。
-
公开(公告)号:CN112926449B
公开(公告)日:2024-03-15
申请号:CN202110210298.9
申请日:2021-02-11
Applicant: 北京工业大学
IPC: G06V40/20 , G06V40/10 , G06V10/82 , G06N3/0464 , G06N3/084
Abstract: 一种基于任意角度人体图像的正面姿态估计方法属于计算机视觉领域,本发明包括一种多角度人体图像数据集的制作以及针对所提出数据集进行二维人体图像的正面姿态估计的算法设计两部分。数据集制作部分主要通过设计一整套数据的采集和数据的处理的方法,通过数据集的制作为算法设计提供数据支持。算法设计部分主要是通过对目前主流的深度学习算法进行改进,以实现任意角度人体图像的正面姿态估计。本发明可以完成任意角度图像的正面姿态估计,即使对人体自遮挡非常严重的背面图像,或者有部分人体缺失侧面图像也可以有较好的表现。
-
公开(公告)号:CN112884822A
公开(公告)日:2021-06-01
申请号:CN202110179042.6
申请日:2021-02-09
Applicant: 北京工业大学
Abstract: 本发明公开了一种基于RepNet模型的人体多视角图像序列的骨架提取方法,基于沙漏网络的二维骨架提取方法和基于RepNet的三维骨架提取方法来提取初始的多视角三维骨架序列。将多视角骨架序列通过基于最小二乘的配准融合方法得到融合后的优化序列,最后利用帧间帧内优化模型对连续帧三维骨架序列进行优化,得到最终优化后的骨架序列;本发明利用三维融合的可扩展性,把得到的多视图三维骨架进行配准融合优化,然后得到更准确的三维骨架序列,能很好的表达运动形态。
-
-
-
-
-
-