动态测试不同SOC和受压状态下电池等效刚度的装置及方法

    公开(公告)号:CN118857626A

    公开(公告)日:2024-10-29

    申请号:CN202411052703.9

    申请日:2024-08-02

    摘要: 本发明公开了动态测试不同SOC和受压状态下电池等效刚度的装置及方法,在整个电池平面进行受力分析,更真实的反映电芯整体等效刚度的变化。设计两个固定支撑板,一个活动支撑板,将电池放置于活动支撑板和上端固定支撑板之间,压力传感器放置于活动支撑板和下端固定支撑板之间,位移传感器垂直穿过上端支撑板,测试点放置于活动支撑板上端面,以进行测量。首先不施加预紧力测量电池空电时的初始厚度和充放电过程的厚度变化情况,然后对空电的电池施加一定预紧力,然后进行充放电测试,电池因此发生规律性的厚度变化,使用压力传感器实时测量电池厚度方向所受压力,位移传感器实时测量电池厚度变化,计算电池等效刚度,得出不同SOC下和不同夹紧力下的等效刚度。

    一种强制风冷散热系统的优化设计方法及其装置

    公开(公告)号:CN117709168A

    公开(公告)日:2024-03-15

    申请号:CN202410149965.0

    申请日:2024-02-02

    摘要: 本发明提供一种强制风冷散热系统的优化设计方法及其装置。该方法包括:获取强制风冷散热系统的综合热阻模型;强制风冷散热系统包括翅片式散热器;综合热阻模型是翅片式散热器的尺寸参数及强制风冷散热系统的工作点风量的函数;采用多目标优化算法,以翅片式散热器的热阻及强制风冷散热系统的体积为优化目标,以热阻的预设最大值和尺寸参数的预设上下限为约束条件,在约束条件下对热阻和尺寸参数进行优化,输出多种优化方案;采用熵权TOPSIS法对多种优化方案进行评价以确定尺寸参数的最优方案。该方法能够完成对强制风冷散热系统的优化设计,保证强制风冷散热系统的尺寸和性能最优,且极大地提升优化效率。上述装置能够实现上述方法。

    一种原位聚合自支撑固态电解质膜的制备方法和应用

    公开(公告)号:CN116683041B

    公开(公告)日:2023-12-01

    申请号:CN202310972967.5

    申请日:2023-08-04

    摘要: 一种原位聚合自支撑固态电解质膜的制备方法和应用,其方法是通过将固体快离子导体与自聚合凝胶电解质溶液混合压制成型后,利用光照和高温实现原位聚合,制备得到自支撑固态电解质膜,该工艺简单、操作简单、成本低廉、快速高效,极具规模化生产的潜力;由于自支撑固态电解质膜制备过程中压制成型,可以通过压制工序实现对电介质膜厚度的控制,能够降低其阻抗,提高柔韧性,从而实现电池性能的优化;由于引入原位聚合工艺实现电解质固化,有效避免了其他工艺中固化过程时溶剂的挥发,也避免了对溶剂的回收,从而降低了生产成本。(56)对比文件胡拥军;陈白珍;袁艳;徐徽;石西昌.正极自支撑的聚合物电解质的制备.中南大学学报(自然科学版).2007,(第02期),全文.范欢欢;周栋;范丽珍;石桥.现场聚合制备锂离子电池用凝胶聚合物电解质研究进展.硅酸盐学报.2013,(第02期),全文.

    一种有机-无机复合固态电解质及其制备方法

    公开(公告)号:CN117712473A

    公开(公告)日:2024-03-15

    申请号:CN202311735797.5

    申请日:2023-12-18

    IPC分类号: H01M10/0565 H01M10/052

    摘要: 本发明提供一种有机‑无机复合固态电解质及其制备方法,包括复合浆料的制备步骤、辊压步骤和原位固化步骤。复合浆料的制备步骤包括将凝胶电解质溶液与无机电解质混合,得到固含量为40%‑70%的有机‑无机复合浆料。辊压步骤包括先将有机‑无机复合浆料涂覆于多孔支撑网上,然后将涂覆了有机‑无机复合浆料的多孔支撑网挤压复合,得到片状固态电解质前驱体。原位固化步骤包括将片状固态电解质前驱体在紫外光照射下进行预聚合,然后在加热状态下进行热固化,得到有机‑无机复合固态电解质。采用本申请的制备方法得到的电解质具有优异的机械性能和电化学性能,能够降低固态电池中固固界面阻抗,有效抑制锂枝晶的刺穿,提高电池性能、安全性,延长电池寿命。