一种具有表层锂浓度梯度的NCM三元正极材料及其制备方法

    公开(公告)号:CN112670511B

    公开(公告)日:2022-06-28

    申请号:CN202011543075.6

    申请日:2020-12-22

    摘要: 本发明公开了一种具有表层锂浓度梯度的NCM三元正极材料及其制备方法,包括以下步骤:S1、将弱酸与溶剂混合配制成弱酸溶液;S2、将NCM三元正极材料加入弱酸溶液中,在50‑80℃下搅拌反应,得到悬浊液,将悬浊液减压抽滤得到固体过滤材料;S3、将固体过滤材料置于管式炉中,在氧气氛围中于400‑800℃下热处理5‑20h即得。本发明先将NCM三元正极材料与弱酸反应,利用质子交换作用进行热处理,通过在NCM三元材料表层构建Li+浓度梯度,从而加快Li+在材料内部的扩散,Li+的快速运动有助于提高材料整体的活性锂含量,在提高放电比容量的同时也能降低Li+扩散带来的晶格畸变,缓解了晶格参数的剧烈变化,提高了材料的循环稳定性。

    多阴离子掺杂单晶高镍正极材料及其制备方法

    公开(公告)号:CN112652771A

    公开(公告)日:2021-04-13

    申请号:CN202011525363.9

    申请日:2020-12-22

    摘要: 本发明公开了一种多阴离子掺杂单晶高镍正极材料及其制备方法,包括以下步骤:S1、将阴离子A与锂盐和高镍单晶三元前驱体三者在无水乙醇中混合均匀,得到第一混合物;S2、将第一混合物置于管式炉中进行煅烧,得到单阴离子掺杂的单晶高镍正极材料;S3、将阴离子B与S2中得到的单晶高镍正极材料分别置于管式炉中进行气相掺杂即得。本发明通过将掺有一种阴离子的前驱体煅烧得到单阴离子掺杂的单晶高镍三元正极材料,随后将另一种阴离子与已得到的单阴离子掺杂的高镍单晶三元正极材料进行气相掺杂,成功得到了多阴离子掺杂的高镍单晶正极材料,克服了传统方式不能有效实现多阴离子掺杂的缺陷,掺杂效果优异,成功提高了单晶高镍三元材料的倍率性能。

    一种具有表层锂浓度梯度的NCM三元正极材料及其制备方法

    公开(公告)号:CN112670511A

    公开(公告)日:2021-04-16

    申请号:CN202011543075.6

    申请日:2020-12-22

    摘要: 本发明公开了一种具有表层锂浓度梯度的NCM三元正极材料及其制备方法,包括以下步骤:S1、将弱酸与溶剂混合配制成弱酸溶液;S2、将NCM三元正极材料加入弱酸溶液中,在50‑80℃下搅拌反应,得到悬浊液,将悬浊液减压抽滤得到固体过滤材料;S3、将固体过滤材料置于管式炉中,在氧气氛围中于400‑800℃下热处理5‑20h即得。本发明先将NCM三元正极材料与弱酸反应,利用质子交换作用进行热处理,通过在NCM三元材料表层构建Li+浓度梯度,从而加快Li+在材料内部的扩散,Li+的快速运动有助于提高材料整体的活性锂含量,在提高放电比容量的同时也能降低Li+扩散带来的晶格畸变,缓解了晶格参数的剧烈变化,提高了材料的循环稳定性。

    多阴离子掺杂单晶高镍正极材料及其制备方法

    公开(公告)号:CN112652771B

    公开(公告)日:2021-12-14

    申请号:CN202011525363.9

    申请日:2020-12-22

    摘要: 本发明公开了一种多阴离子掺杂单晶高镍正极材料及其制备方法,包括以下步骤:S1、将阴离子A与锂盐和高镍单晶三元前驱体三者在无水乙醇中混合均匀,得到第一混合物;S2、将第一混合物置于管式炉中进行煅烧,得到单阴离子掺杂的单晶高镍正极材料;S3、将阴离子B与S2中得到的单晶高镍正极材料分别置于管式炉中进行气相掺杂即得。本发明通过将掺有一种阴离子的前驱体煅烧得到单阴离子掺杂的单晶高镍三元正极材料,随后将另一种阴离子与已得到的单阴离子掺杂的高镍单晶三元正极材料进行气相掺杂,成功得到了多阴离子掺杂的高镍单晶正极材料,克服了传统方式不能有效实现多阴离子掺杂的缺陷,掺杂效果优异,成功提高了单晶高镍三元材料的倍率性能。

    一种表面具有锂空位结构的NCM三元正极材料

    公开(公告)号:CN113697866B

    公开(公告)日:2022-09-20

    申请号:CN202110367644.4

    申请日:2021-04-06

    摘要: 本发明涉及一种表面具有锂空位结构的NCM三元正极材料,属于化学储能电池领域。首先将弱氧化剂加入到有机溶剂中,搅拌混合均匀,得到混合溶液;然后将具有微米级二次颗粒的NCM三元正极材料加入所述混合溶液中,在20~60℃下保温12~24h,得到悬浊液;固液分离,收集的固体材料在氧气氛围中200~600℃下热处理1~10h,得到一种表面具有锂空位结构的NCM三元正极材料锂空位的形成有助于降低Li+在八面体位之间迁移时的迁移能,从而加快Li+在材料内部的扩散。Li+迁移速率的增加有助于提高材料的倍率性能,同时降低极化现象。此外,Li+的快速运动还有助于提高材料中Li分布的均匀性,提高材料的循环稳定性。