-
公开(公告)号:CN112670511B
公开(公告)日:2022-06-28
申请号:CN202011543075.6
申请日:2020-12-22
申请人: 北京理工大学重庆创新中心 , 北京理工大学
IPC分类号: H01M4/62 , H01M4/505 , H01M4/525 , H01M10/0525
摘要: 本发明公开了一种具有表层锂浓度梯度的NCM三元正极材料及其制备方法,包括以下步骤:S1、将弱酸与溶剂混合配制成弱酸溶液;S2、将NCM三元正极材料加入弱酸溶液中,在50‑80℃下搅拌反应,得到悬浊液,将悬浊液减压抽滤得到固体过滤材料;S3、将固体过滤材料置于管式炉中,在氧气氛围中于400‑800℃下热处理5‑20h即得。本发明先将NCM三元正极材料与弱酸反应,利用质子交换作用进行热处理,通过在NCM三元材料表层构建Li+浓度梯度,从而加快Li+在材料内部的扩散,Li+的快速运动有助于提高材料整体的活性锂含量,在提高放电比容量的同时也能降低Li+扩散带来的晶格畸变,缓解了晶格参数的剧烈变化,提高了材料的循环稳定性。
-
公开(公告)号:CN112652771A
公开(公告)日:2021-04-13
申请号:CN202011525363.9
申请日:2020-12-22
申请人: 北京理工大学重庆创新中心 , 北京理工大学
IPC分类号: H01M4/62 , H01M4/505 , H01M4/525 , H01M10/0525
摘要: 本发明公开了一种多阴离子掺杂单晶高镍正极材料及其制备方法,包括以下步骤:S1、将阴离子A与锂盐和高镍单晶三元前驱体三者在无水乙醇中混合均匀,得到第一混合物;S2、将第一混合物置于管式炉中进行煅烧,得到单阴离子掺杂的单晶高镍正极材料;S3、将阴离子B与S2中得到的单晶高镍正极材料分别置于管式炉中进行气相掺杂即得。本发明通过将掺有一种阴离子的前驱体煅烧得到单阴离子掺杂的单晶高镍三元正极材料,随后将另一种阴离子与已得到的单阴离子掺杂的高镍单晶三元正极材料进行气相掺杂,成功得到了多阴离子掺杂的高镍单晶正极材料,克服了传统方式不能有效实现多阴离子掺杂的缺陷,掺杂效果优异,成功提高了单晶高镍三元材料的倍率性能。
-
公开(公告)号:CN112670511A
公开(公告)日:2021-04-16
申请号:CN202011543075.6
申请日:2020-12-22
申请人: 北京理工大学重庆创新中心 , 北京理工大学
IPC分类号: H01M4/62 , H01M4/505 , H01M4/525 , H01M10/0525
摘要: 本发明公开了一种具有表层锂浓度梯度的NCM三元正极材料及其制备方法,包括以下步骤:S1、将弱酸与溶剂混合配制成弱酸溶液;S2、将NCM三元正极材料加入弱酸溶液中,在50‑80℃下搅拌反应,得到悬浊液,将悬浊液减压抽滤得到固体过滤材料;S3、将固体过滤材料置于管式炉中,在氧气氛围中于400‑800℃下热处理5‑20h即得。本发明先将NCM三元正极材料与弱酸反应,利用质子交换作用进行热处理,通过在NCM三元材料表层构建Li+浓度梯度,从而加快Li+在材料内部的扩散,Li+的快速运动有助于提高材料整体的活性锂含量,在提高放电比容量的同时也能降低Li+扩散带来的晶格畸变,缓解了晶格参数的剧烈变化,提高了材料的循环稳定性。
-
公开(公告)号:CN112652771B
公开(公告)日:2021-12-14
申请号:CN202011525363.9
申请日:2020-12-22
申请人: 北京理工大学重庆创新中心 , 北京理工大学
IPC分类号: H01M4/62 , H01M4/505 , H01M4/525 , H01M10/0525
摘要: 本发明公开了一种多阴离子掺杂单晶高镍正极材料及其制备方法,包括以下步骤:S1、将阴离子A与锂盐和高镍单晶三元前驱体三者在无水乙醇中混合均匀,得到第一混合物;S2、将第一混合物置于管式炉中进行煅烧,得到单阴离子掺杂的单晶高镍正极材料;S3、将阴离子B与S2中得到的单晶高镍正极材料分别置于管式炉中进行气相掺杂即得。本发明通过将掺有一种阴离子的前驱体煅烧得到单阴离子掺杂的单晶高镍三元正极材料,随后将另一种阴离子与已得到的单阴离子掺杂的高镍单晶三元正极材料进行气相掺杂,成功得到了多阴离子掺杂的高镍单晶正极材料,克服了传统方式不能有效实现多阴离子掺杂的缺陷,掺杂效果优异,成功提高了单晶高镍三元材料的倍率性能。
-
公开(公告)号:CN114975914B
公开(公告)日:2024-04-12
申请号:CN202210497170.X
申请日:2022-05-09
申请人: 北京理工大学
IPC分类号: H01M4/36 , H01M4/505 , H01M4/525 , H01M4/62 , H01M10/0525
摘要: 本发明涉及一种表面同时包覆多种物质的高镍NCM三元正极材料及其应用,属于锂离子电池技术领域。通过将九水合硝酸铝和磷酸二氢铵加入无水乙醇中超声分散均匀,然后于50℃~70℃下磁力搅拌12~18h,然后加入高镍NCM三元正极材料,密封并继续磁力搅拌2h~3h,密封搅拌结束后除去无水乙醇,得到的材料于氧气氛围中,400℃~550℃下煅烧240min~360min,煅烧结束后得到所述材料。通过简单的一步包覆改性提升了材料结构及电化学性能;同时通过提升包覆物中锂离子导体电化学活性物质的比例,降低了由于电化学惰性包覆物的存在所导致的材料容量降低的消极影响。
-
公开(公告)号:CN113697866B
公开(公告)日:2022-09-20
申请号:CN202110367644.4
申请日:2021-04-06
申请人: 北京理工大学
IPC分类号: H01M4/505 , C01G53/00 , H01M4/525 , H01M10/0525
摘要: 本发明涉及一种表面具有锂空位结构的NCM三元正极材料,属于化学储能电池领域。首先将弱氧化剂加入到有机溶剂中,搅拌混合均匀,得到混合溶液;然后将具有微米级二次颗粒的NCM三元正极材料加入所述混合溶液中,在20~60℃下保温12~24h,得到悬浊液;固液分离,收集的固体材料在氧气氛围中200~600℃下热处理1~10h,得到一种表面具有锂空位结构的NCM三元正极材料锂空位的形成有助于降低Li+在八面体位之间迁移时的迁移能,从而加快Li+在材料内部的扩散。Li+迁移速率的增加有助于提高材料的倍率性能,同时降低极化现象。此外,Li+的快速运动还有助于提高材料中Li分布的均匀性,提高材料的循环稳定性。
-
公开(公告)号:CN113540417A
公开(公告)日:2021-10-22
申请号:CN202110777546.8
申请日:2021-07-09
申请人: 北京理工大学
IPC分类号: H01M4/36 , H01M4/505 , H01M4/525 , H01M4/62 , H01M10/0525 , C30B1/02 , C30B1/10 , C30B29/22 , C30B33/00
摘要: 本发明涉及一种聚噻吩包覆的单晶NCM三元材料,属于化学储能电池领域。首先将噻吩单体分散在有机溶剂中,随后加入单晶NCM三元材料进行分散,再在悬浊液中加入氧化剂于冰水浴环境中进行氧化,最终制备得到一种聚噻吩包覆的单晶NCM三元材料。聚噻吩具有导电聚合物特性,聚噻吩包覆在单晶NCM三元材料表面,能够降低较长迁移路径下的锂离子扩散阻碍,进而增强单晶NCM材料的电子导电性,从而加快材料表面的电化学反应过程以及电荷传输,降低材料在充放电循环过程中的极化现象和电压降,提高材料的循环稳定性。此外聚噻吩包覆层也能够隔绝电解液和单晶NCM材料的接触,降低界面副反应。
-
公开(公告)号:CN113193190A
公开(公告)日:2021-07-30
申请号:CN202110366456.X
申请日:2021-04-06
申请人: 北京理工大学
摘要: 本发明涉及一种纤维增强的NCM三元正极复合材料及其制备方法,属于化学储能电池领域。所述材料中无机氧化物纳米纤维分布在NCM三元正极材料二次颗粒内部。所述方法通过在共沉淀法合成NCM三元正极材料前驱体的合成过程中,将无机纳米纤维加入到反应釜中,无机纳米纤维可以作为NCM前驱体材料晶体形核的核心,使得NCM前驱体材料的纳米片能够在堆积生长的过程中将纳米纤维包埋进NCM前驱体材料内部。在后续的混锂高温煅烧过程中,纳米纤维能保持稳定不分解,最终稳定保存在NCM三元正极材料内部。所述材料可增强材料颗粒的剪切强度,降低二次颗粒在循环过程中的破碎现象。
-
公开(公告)号:CN113193190B
公开(公告)日:2022-09-20
申请号:CN202110366456.X
申请日:2021-04-06
申请人: 北京理工大学
摘要: 本发明涉及一种纤维增强的NCM三元正极复合材料及其制备方法,属于化学储能电池领域。所述材料中无机氧化物纳米纤维分布在NCM三元正极材料二次颗粒内部。所述方法通过在共沉淀法合成NCM三元正极材料前驱体的合成过程中,将无机纳米纤维加入到反应釜中,无机纳米纤维可以作为NCM前驱体材料晶体形核的核心,使得NCM前驱体材料的纳米片能够在堆积生长的过程中将纳米纤维包埋进NCM前驱体材料内部。在后续的混锂高温煅烧过程中,纳米纤维能保持稳定不分解,最终稳定保存在NCM三元正极材料内部。所述材料可增强材料颗粒的剪切强度,降低二次颗粒在循环过程中的破碎现象。
-
公开(公告)号:CN113526571A
公开(公告)日:2021-10-22
申请号:CN202110777548.7
申请日:2021-07-09
申请人: 北京理工大学
摘要: 本发明涉及一种钛酸钡包覆的NCM三元正极材料,属于化学储能电池领域。通过采用湿化学法将有机钡盐和有机钛盐包覆在NCM三元材料表面,进一步通过水解作用水解两种有机盐,然后在高温下进行二次煅烧,最终制备得到钛酸钡包覆的NCM三元材料。钛酸钡材料具有压电特性,能够在电池正极片辊压过程中将NCM三元材料二次颗粒之间相互挤压产生的应力作用转化为电荷分布,也即将机械能转化为电能,从而缓解NCM三元材料二次颗粒直接接触及挤压带来的开裂和破碎问题,抑制界面副反应,提高锂离子电池的电化学性能。
-
-
-
-
-
-
-
-
-