一种基于多孔氮化硅毛细芯的环路热管蒸发器及其制造方法

    公开(公告)号:CN113720186A

    公开(公告)日:2021-11-30

    申请号:CN202110844323.9

    申请日:2021-07-26

    IPC分类号: F28D15/04

    摘要: 本发明公开了一种基于多孔氮化硅毛细芯的环路热管蒸发器及其制造方法,该蒸发器包括:金属管壳、金属化层和氮化硅陶瓷毛细芯;氮化硅陶瓷毛细芯的一端为密封段,另一端加工有沿其轴向的蒸汽槽道;金属管壳同轴套装在氮化硅陶瓷毛细芯的外部;金属管壳内径与氮化硅陶瓷毛细芯外径的尺寸公差为过盈配合关系,且金属管壳内径与氮化硅陶瓷毛细芯的密封段外径之间设有一层金属化层,在金属管壳与氮化硅陶瓷毛细芯的过盈装配过程中,金属化层发生屈服变形,填充金属管壳与氮化硅陶瓷毛细芯的密封段之间的加工缺陷或缝隙;本发明能够实现金属管壳与氮化硅陶瓷毛细芯的装配,并在装配面形成密封,提高环路热管蒸发器毛细力,从而提高环路热管的传热能力。

    一种热泵系统用无油线性压缩机

    公开(公告)号:CN111561437B

    公开(公告)日:2021-09-24

    申请号:CN202010257746.6

    申请日:2020-04-03

    摘要: 本发明公开了一种热泵系统用无油线性压缩机,包括:汽缸、汽缸架、直线电机组件、吸气阀片、排气阀总成及壳体;两个汽缸架的法兰盘端对称安装在汽缸的两端;两个相同的直线电机组件分别对应安装在两个汽缸架的中心筒外部;两个所述吸气阀片的外缘分别固定在两个活塞的相对端;所述排气阀总成安装在排气腔内;两个壳体分别安装在两个直线电机组件的外部,且壳体的开口端固定在汽缸架的法兰盘的外缘上;本发明直接由两个对置布置的直线电机组件驱动活塞做往复运动,提高了压缩机的压缩效率;且两个活塞的对置运动可抵消大部分振动,整机振动量更小;采用无油运行可避免润滑油引起的系统性能、可靠性及使用场景的限制,大大增加其使用范围。

    一种不凝气体对部分重力驱动两相流体回路影响分析方法

    公开(公告)号:CN104504241B

    公开(公告)日:2017-11-03

    申请号:CN201410720129.X

    申请日:2014-12-02

    IPC分类号: G06F19/00 F28D15/02

    摘要: 本发明公开了一种不凝气体对部分重力驱动两相流体回路影响分析方法。使用本发明能够有效地对不凝气体在部分重力条件下对重力驱动两相流体回路的影响进行评估。本发明首先分析了最恶劣情况,即储液器气空间容积最小时,相同不凝气体量的分压力最大,重力驱动两相流体回路蒸发器相变温度升高幅度最大,不凝气体对重力驱动两相流体回路的影响最大,然后根据理想气体状态方程获得不凝气体的分压力,根据氨工质饱和蒸汽压与温度之间的关系获得氨工质的压力,从而获得蒸发器的温度,进而获得由不凝气体引起的重力驱动两相流体回路蒸发器与储液器之间的温差,从而对部分重力情况下不凝气体对重力驱动两相流体回路的最大恶劣影响情况进行评估。

    一种适应于小空间、多点热源的高效散热系统

    公开(公告)号:CN105115329A

    公开(公告)日:2015-12-02

    申请号:CN201510501618.0

    申请日:2015-08-14

    IPC分类号: F28D15/02 H05K7/20

    摘要: 本发明公开了一种适应于小空间、多点热源的高效散热系统,属于航空航天热控技术领域。系统包括环路热管毛细泵、蒸汽管路、液体管路、冷凝换热器及平板蒸发器;环路热管毛细泵利用主动加热器的热量加热并使环路热管毛细泵内的工质蒸发,经过蒸汽管路至冷凝换热器冷凝,冷凝后的液体通过液体管路回到平板蒸发器内吸收小空间内点热源的热量再次蒸发,工质再次回到冷凝换热器冷凝,冷凝后回流至环路热管毛细泵完成一次冷却循环;在冷凝换热器及环路热管毛细泵之间串联一套或一套以上由平板蒸发器、蒸汽管路、冷凝换热器、液体管路组成的冷却回路,则可以进一步增大携带的热量。本发明能够实现小空间内的高效散热。

    多约束多航天器飞行间距预示及碰撞规避方法

    公开(公告)号:CN103064423B

    公开(公告)日:2015-07-08

    申请号:CN201210543834.8

    申请日:2012-12-11

    IPC分类号: G05D1/10

    摘要: 多约束多航天器飞行间距预示及碰撞规避方法,(1)根据在轨已发射航天器巡航姿态下姿控消耗推进剂的遥测数据值,确定姿控平均力的大小;(2)根据各航天器的初始星历信息以及步骤(1)中确定的姿控平均力进行高精度轨道预报,计算任一时刻各航天器在惯性坐标系的星历以及任一时刻各航天器之间的相对距离,确定航天器间的最小相对距离;(3)改变姿控平均力的作用方向,重复步骤(1)、(2),计算各航天器最小相对距离的最小值,该最小值对应的姿控平均力作用方向即为最恶劣情况;(4)将步骤(3)中确定的最小值与最小安全距离进行比较,若最小值大于最小安全距离,则航天器无碰撞风险,否则在第一圈测控跟踪弧段内,选择其中一个航天器进行一次轨道机动,拉开航天器之间的距离,规避航天器碰撞风险。

    一种不凝气体对部分重力驱动两相流体回路影响分析方法

    公开(公告)号:CN104504241A

    公开(公告)日:2015-04-08

    申请号:CN201410720129.X

    申请日:2014-12-02

    IPC分类号: G06F19/00 F28D15/02

    摘要: 本发明公开了一种不凝气体对部分重力驱动两相流体回路影响分析方法。使用本发明能够有效地对不凝气体在部分重力条件下对重力驱动两相流体回路的影响进行评估。本发明首先分析了最恶劣情况,即储液器气空间容积最小时,相同不凝气体量的分压力最大,重力驱动两相流体回路蒸发器相变温度升高幅度最大,不凝气体对重力驱动两相流体回路的影响最大,然后根据理想气体状态方程获得不凝气体的分压力,根据氨工质饱和蒸汽压与温度之间的关系获得氨工质的压力,从而获得蒸发器的温度,进而获得由不凝气体引起的重力驱动两相流体回路蒸发器与储液器之间的温差,从而对部分重力情况下不凝气体对重力驱动两相流体回路的最大恶劣影响情况进行评估。

    重力热管不凝气体量的精确测试方法

    公开(公告)号:CN104457891A

    公开(公告)日:2015-03-25

    申请号:CN201410721250.4

    申请日:2014-12-02

    IPC分类号: G01F22/02

    摘要: 本发明属于流体回路地面试验技术领域,具体涉及一种不凝气体量的测试方法。重力热管不凝气体量的精确测试方法,它包括以下步骤:步骤A:将重力热管竖直放入真空室(1)内,重力热管的管路(15)上部与真空室(1)内的冷板(9)贴合;步骤B:静置一段时间后,对真空室(1)抽真空;步骤C:通过冷板(9)降低重力热管至设定温度;同时,重力热管与真空室(1)进行辐射换热;步骤D:当重力热管温度平衡时,由红外测温仪(7)采集重力热管上温度测点的温度,并计算不凝气体量。本发明减少了测量误差提高了计算精度。

    基于电缆加热器的航天器动力系统推进管路通用热控装置及方法

    公开(公告)号:CN113525723B

    公开(公告)日:2023-08-04

    申请号:CN202110803907.1

    申请日:2021-07-16

    IPC分类号: B64G1/50 B64G1/40 H05B3/56

    摘要: 本发明提供一种基于电缆加热器的航天器动力系统推进管路的通用热控装置,极大降低热控设计和实施难度,节约实施时间,缩短航天器动力系统研制和维护周期。该热控装置包括:绝缘胶带、电缆加热器、绝缘膜和多层隔热组件;绝缘胶带缠绕在推进管路的外壁上,用于推进管路电绝缘;电缆加热器为内部为电阻丝外部为绝缘层的丝状结构;电缆加热器均匀缠绕在电绝缘处理后的推进管路外部,电缆加热器通过引出线与外部电源相连,形成加热回路;绝缘膜缠绕在电缆加热器外部,用于二次绝缘;多层隔热组件缠绕在绝缘膜外部。此外,本发明还提供一种基于电缆加热器的航天器动力系统推进管路的通用热控方法。