一种半功率角外波瓣快速跌落的矩形波束赋形天线

    公开(公告)号:CN107230845B

    公开(公告)日:2020-11-06

    申请号:CN201710322793.2

    申请日:2017-05-09

    IPC分类号: H01Q21/24 H01Q3/28 H01Q3/30

    摘要: 本发明提供一种半功率角外波瓣快速跌落的矩形波束赋形天线,包括三组子阵列,三组子阵列的排布方式为:以N×N子阵列A组为中心,在A组子阵列的上、下、左、右分别增加N个阵元构成B组子阵列,再在B组子阵列的上、下、左、右分别外扩不多于N个阵元构成C组子阵列,其中N≥1;同一组子阵列中阵元的激励幅度相同,且A组子阵列中阵元的激励幅度最大;A组和B组子阵列中阵元的相位相同,C组子阵列中阵元的相位与其它组阵元相差180°。该赋形天线采用了较少的阵元数量,实现了矩形波束半功率角外波瓣快速跌落。

    一种地球同步轨道SAR卫星三阶多普勒参数计算方法

    公开(公告)号:CN112462339B

    公开(公告)日:2023-07-25

    申请号:CN202011053190.5

    申请日:2020-09-29

    IPC分类号: G01S7/40

    摘要: 本发明公开一种地球同步轨道SAR卫星三阶多普勒参数计算方法,一、根据星地几何关系模型,得到地球同步轨道SAR卫星的1‑4阶运动状态矢量:位置Rs、速度Vs、加速度As和加速度一阶微分A's;二、根据星地几何关系模型,得到SAR卫星波束中心瞄准点的1‑4阶运动状态矢量:位置Rt、速度Vt、加速度At和加速度一阶微分A't;三、基于步骤一和步骤二的结果,得到Geo‑SAR卫星的三阶多普勒参数;本发明方法得到的三阶多普勒参数可以极大提高卫星的高分辨率建模精度,降低卫星研制难度,带来很好的社会经济效益和军事效益。

    一种可提供稳定长短基线的四星Helix编队构型

    公开(公告)号:CN109085586B

    公开(公告)日:2020-12-11

    申请号:CN201810860789.6

    申请日:2018-08-01

    IPC分类号: G01S13/90

    摘要: 本发明公开了一种可提供稳定长短基线的四星Helix编队构型。使用本发明能够在一个轨道周期内提供稳定的垂直有效长基线和垂直有效短基线,从而可利用长短基线组合基线高精度干涉测高。本发明构型包括1颗主星和3颗辅星,主星轨道与各辅星轨道分别为满足Helix构型的双螺旋轨道;本发明构型在编队飞行过程中的任意时刻,主星都可以与其中一颗辅星之间形成最优垂直有效基线,满足最优基线取值范围指标,任意时刻都存在两颗辅星之间形成的有效长基线,从而在整个轨道周期内,任意时刻总是存在一组稳定的有效长基线和短基线,从而可利用长短基线组合基线高精度干涉测高。

    主星位于中心、辅星cartwheel编队的分布式SAR构型

    公开(公告)号:CN109031297A

    公开(公告)日:2018-12-18

    申请号:CN201810861642.9

    申请日:2018-08-01

    IPC分类号: G01S13/90

    摘要: 本发明公开了一种主星位于中心、辅星cartwheel编队的分布式SAR构型。使用本发明能够形成稳定的垂直有效基线,且在一个轨道周期内的任意时刻均存在垂直有效长基线和最优垂直有效短基线,能够有效提高干涉测高精度,且能耗低。本发明包括一颗主星和多颗辅星,其中,主、辅星位于同一个轨道面上,辅星均匀分布在以主星为中心的Cartwheel椭圆轨迹上,并围绕主星沿所述Cartwheel椭圆轨迹飞行;该构型下,在整个轨道运行周期的任意时刻,均有由两颗辅星形成的有效垂直长基线和由主星和一颗辅星形成的最优垂直有效短基线,从而可以利用长、短基线进行最优的干涉信号处理,高效高质地获取测绘地区的高精度DEM,相对测高精度可以达到0.5m,可满足1:5000比例尺的测绘制图需求。

    一种高轨SAR图像空变相位误差估计方法

    公开(公告)号:CN113805146B

    公开(公告)日:2024-04-02

    申请号:CN202110836910.3

    申请日:2021-07-23

    IPC分类号: G01S7/40 G01S13/90

    摘要: 本发明提出了一种高轨SAR图像空变相位误差估计方法,能够满足高轨SAR高分辨率、大幅宽场景的高精度成像需求。通过对高轨SAR图像沿距离向和方位向分块估计相位误差;利用估计得到的相位误差分别对每个图像块进行相位误差预补偿,得到预补偿后的图像块;利用图像质量提升较大的图像块对应的相位误差,计算得到整个场景相位误差二维曲面对应的多项式系数;根据得到的多项式系数,拟合整个场景的相位误差二维曲面,将整个场景的相位误差拟合曲面补偿到高轨SAR整幅图像中,完成相位误差最终校正,能够解决传统PGA算法在高轨SAR大幅宽场景下估计精度随场景对比度变化、补偿后图像聚焦效果不一致的问题。

    一种GEO SAR卫星波束指向标定方法
    7.
    发明公开

    公开(公告)号:CN112213702A

    公开(公告)日:2021-01-12

    申请号:CN202011022737.5

    申请日:2020-09-25

    IPC分类号: G01S7/40

    摘要: 本发明公开了一种GEO SAR卫星波束指向标定方法,本发明采用比幅单脉冲法实现GEO SAR卫星SAR天线波束指向标定,SAR卫星天线通过不同馈源组合形成4个标校波束,分别为距离向左右对称波束RL和RR,方位向左右对称波束AL和AR。然后依次按照RL‑>RR‑>AL‑>AL的顺序向地面标校站发送信标脉冲信号(LFM信号);地面标校站接收机放置于4个标校波束的中心位置。接收机接收信标信号后,经过数据处理可以分别估计距离向和方位向波束指向偏差,从而实现天线波束指向标定。

    基于仿生偏振测角敏感器与磁强计的卫星姿态确定方法

    公开(公告)号:CN112097777A

    公开(公告)日:2020-12-18

    申请号:CN202010943395.4

    申请日:2020-09-09

    IPC分类号: G01C21/24

    摘要: 本发明涉及一种基于仿生偏振测角敏感器与磁强计的卫星姿态确定方法,包括步骤如下:步骤一、根据仿生偏振测角敏感器原理通过光电材料构建偏振测量模型,得出太阳矢量在仿生偏振测角敏感器坐标系中的偏振方位角;步骤二、在卫星上安装两个仿生偏振测角敏感器,分别测得两个仿生偏振测角敏感器的最大偏振方向,得到太阳矢量;步骤三、构建利用三轴磁强计测量地磁场矢量的模型,测量得到地磁场矢量;步骤四、利用太阳矢量和地磁矢量通过双矢量定姿得到姿态转换矩阵,实现卫星的姿态确定。本发明公开了一种卫星偏振导航方法,是一种无源被动的导航方式,无需向外发射信息,自主性强,是对当前卫星导航信息源的进一步拓展。

    一种高轨合成孔径雷达动目标速度检测方法

    公开(公告)号:CN108549081B

    公开(公告)日:2020-05-08

    申请号:CN201810408584.4

    申请日:2018-05-02

    IPC分类号: G01S13/90 G01S13/58

    摘要: 本发明提供一种高轨合成孔径雷达动目标速度检测方法,基于不同原始子孔径图像中的变化信息实现动目标的速度估计,克服传统单通道动目标检测系统检测概率低、盲速以及最小检测速度限制等问题;本发明通过径向速度和方位向速度不断去更新相位补偿函数后,重新进行BP成像,直到径向速度和方位向速度满足设定条件,符合一定的精度要求;并且,由于本发明进行多次BP成像,获得的子孔径图像聚焦度更好,能够提供类视频的高轨SAR产品,从而获得动目标的位置、速度、运动趋势等各种运动参数信息,显著提升SAR图像产品的应用水平。

    一种高低轨双基SAR斜距确定方法

    公开(公告)号:CN109164449A

    公开(公告)日:2019-01-08

    申请号:CN201811101655.2

    申请日:2018-09-20

    IPC分类号: G01S13/90

    摘要: 本发明公开了一种高低轨双基SAR斜距确定方法,该方法包括如下步骤:(1)、建立非“停-走”假设;假设SAR脉冲信号在发射时刻t时从高轨卫星发出,此时高轨卫星的位置为PG(t),速度为VG(t),低轨卫星的位置为PL(t),速度为VL(t)、加速度为aL(t),经过第一时延η′后,卫星信号到达目标位置PT,定义此时低轨卫星位置为PL(t1)、速度为VL(t1),卫星信号经目标反射形成回波信号,回波信号在第二时延η″后,到达低轨卫星,被低轨卫星接收,定义此时低轨卫星的位置为PL(t2)。(2)、在非“停-走”假设下,推导高低轨双基SAR精确斜距模型;(3)、根据高低轨双基SAR精确斜距模型,计算高低轨双基SAR精确斜距r(t)。该发明斜距计算精度高,具有很好地抑制模糊和聚焦的效果。