一种液氢汽化装置及方法
    2.
    发明公开

    公开(公告)号:CN118602287A

    公开(公告)日:2024-09-06

    申请号:CN202410588278.9

    申请日:2024-05-13

    IPC分类号: F17C7/04 F17C13/02 F17C13/04

    摘要: 本发明公开了一种液氢汽化装置及方法,属于液氢汽化设备领域。系统包括海水管路、换热壳体、氢管路、液氢汽化单元和控制器;海水管路的前端连接海水泵,后端分为若干支路,随后再次合并为一条管路;每条支路均依次连接有不同的电磁阀和换热壳体;每个换热壳体内部具有能构成换热接触的液氢汽化单元;氢管路的中间分为若干支路,随后再次合并为一条管路;每条支路均依次连接有不同的液氢阀、液氢汽化单元和温度传感器;控制器通过信号线分别连接电磁阀和温度传感器。本发明利用海水作为液氢汽化热源,提升液氢汽化效率,降低液氢汽化器体积,同时设计特定的换热结构和运行流程,克服海水结冰、换热器表面结垢、海上运输晃动过大等不利因素。

    一种用于氢能飞机的氢泄漏通风系统及方法

    公开(公告)号:CN118560704A

    公开(公告)日:2024-08-30

    申请号:CN202410609296.0

    申请日:2024-05-16

    摘要: 本发明公开了一种用于氢能飞机的氢泄漏通风系统及方法,涉及氢能飞机的氢安全领域。系统中的液氢管路依次连接液氢杜瓦瓶、第三低温截止阀、液氢一级换热器、第一低温截止阀、液氢二级换热器、第三截止阀和发动机;冷却液出流管路依次连接发动机、第四截止阀和液氢二级换热器;冷却液回流管路依次连接液氢二级换热器、第一截止阀和发动机;发动机尾气管路依次连接发动机、第五截止阀、液氢一级换热器、第二低温截止阀、干燥器和尾气缓冲罐;小流量吹除管路依次连接尾气缓冲罐、背压阀和排空口;大流量吹除管路依次连接缓冲罐、第二截止阀和排气口。本发明具有被动和主动排放贫氧尾气的功能,分别用于无明显氢泄漏和发生明显氢泄漏时的稀释吹除。

    一种间接换热式液氢汽化系统及方法

    公开(公告)号:CN118602288A

    公开(公告)日:2024-09-06

    申请号:CN202410588280.6

    申请日:2024-05-13

    IPC分类号: F17C7/04 F17C13/02 F17C13/04

    摘要: 本发明公开了一种间接换热式液氢汽化系统及方法,涉及液氢汽化设备领域。系统包括控温汽化器、海水管路、液氢管路、氢支路和工质管路;海水管路依次连接海水截止阀、海水泵、氢气升温器的第一通道和控温汽化器的液相工质区;液氢管路与控温汽化器的气相工质区换热后与温度传感器相连,随后分为两条支路;位于控温汽化器上游的液氢管路还设有氢支路;控温汽化器的气相工质区处设有工质管路进口和工质管路出口,工质管路出口通过工质管路回流至工质管路出口。本发明利用海水作为液氢汽化热源,提升液氢汽化效率,降低液氢汽化器体积,同时采用中间换热介质以及压力调控方式,克服海水结冰等典型难题,并实现特定的氢气温度调控。

    一种超临界氢状态评估方法
    5.
    发明公开

    公开(公告)号:CN118506889A

    公开(公告)日:2024-08-16

    申请号:CN202410588284.4

    申请日:2024-05-13

    IPC分类号: G16C10/00 G16C20/30

    摘要: 本发明公开了一种超临界氢状态评估方法,涉及氢能领域。本发明通过设置特定的传感器阵列以及转化计算,可以实时监测低温储罐内部液氢超临界转变过程的温度场、密度场、质量场以及剩余液氢质量等关键信息,解决低温储罐内液氢超临界转变状态难以明晰的难题;利用二维轴对称模型对低温储罐进行几何建模,并通过角度积分获取三维形式的数据信息,具有传感器数量少、布置方便等优势;提出的低温储罐内超临界状态评估方法无需复杂测试结构,硬件成本低,仅需通过间接计算即可达到复杂状态实时测量,有利于推广应用。

    一种并行预冷的液氢加注系统及其方法

    公开(公告)号:CN118242546A

    公开(公告)日:2024-06-25

    申请号:CN202410554802.0

    申请日:2024-05-07

    IPC分类号: F17C5/04 F17C13/00 F17D3/01

    摘要: 本发明公开了一种并行预冷的液氢加注系统及其方法,属于液氢技术领域。该液氢加注系统包括高压预冷管路、高压液氢罐、低压预冷管路、低压液氢罐、管阀子系统、液氢加注箱、引射子系统;所述引射子系统中包括引射管路、氢气引射器。该系统能够减少预冷时间、提高预冷效率:通过对液氢加注管路和液氢加注箱进行同步并联预冷,可以显著减少系统的整体预冷时间;对于预冷时间较长的液氢加注箱,采用外部液氢罐直接喷雾冷却的方式,可以有效避免传统预冷过程中产生气膜,从而降低预冷效率的问题;通过分别设置高压预冷和低压预冷,并利用氢气引射器部件,可以降低液氢加注箱内部压力,进一步提升雾化后的液氢汽化效率,加快液氢加注箱整体冷却。