一种基于GA-Elman神经网络的可靠性增长预测方法

    公开(公告)号:CN109800866B

    公开(公告)日:2020-12-29

    申请号:CN201711133837.3

    申请日:2017-11-16

    摘要: 一种基于GA‑Elman神经网络的可靠性增长预测方法,其步骤如下:一、收集故障数据;二、将故障数据整理成训练数据组;三、设置GA‑Elman神经网络参数;四、建立可靠性增长模型;五、对产品进行可靠性增长预测;六、对产品进行可靠性增长跟踪预测;七、结果分析讨论;通过以上步骤,建立了一种基于GA‑Elman神经网络的可靠性增长预测方法。在历史故障数据的基础上,每产生新的故障数据都是可靠性增长的新状态,利用神经网络非线性拟合构建增长预测模型,利用自学习能力实现模型更新,解决传统模型应用范围受限,参数求解复杂,以及不能及时更新模型等问题,提高了在增长过程中预测的准确性、跟踪的有效性,为可靠性增长管理提供指导。

    一种基于多变环境下加速退化数据的集成寿命预测方法

    公开(公告)号:CN108520325B

    公开(公告)日:2021-08-31

    申请号:CN201810335391.0

    申请日:2018-04-16

    摘要: 本发明公开了一种基于多变环境下加速退化数据的集成寿命预测方法,为了解决目前利用加速退化数据进行寿命预测时忽略的多变环境影响问题。首先,利用集成学习中Bagging算法对数据集进行重采样并进行数据集划分;然后,利用采样集数据分别建立基于贝叶斯方法、支持向量机方法和BP神经网络方法的寿命预测子模型;最后,利用集成学习方法中的结合策略对子模型进行输出平均,得到集成寿命预测模型。本发明在考虑多变环境应力影响的同时,可以提高产品寿命预测的稳定性和精度,并提高预测模型的泛化能力。本发明适用于受多变环境影响的产品的寿命预测。

    一种基于GA-Elman神经网络的可靠性增长预测方法

    公开(公告)号:CN109800866A

    公开(公告)日:2019-05-24

    申请号:CN201711133837.3

    申请日:2017-11-16

    摘要: 一种基于GA-Elman神经网络的可靠性增长预测方法,其步骤如下:一、收集故障数据;二、将故障数据整理成训练数据组;三、设置GA-Elman神经网络参数;四、建立可靠性增长模型;五、对产品进行可靠性增长预测;六、对产品进行可靠性增长跟踪预测;七、结果分析讨论;通过以上步骤,建立了一种基于GA-Elman神经网络的可靠性增长预测方法。在历史故障数据的基础上,每产生新的故障数据都是可靠性增长的新状态,利用神经网络非线性拟合构建增长预测模型,利用自学习能力实现模型更新,解决传统模型应用范围受限,参数求解复杂,以及不能及时更新模型等问题,提高了在增长过程中预测的准确性、跟踪的有效性,为可靠性增长管理提供指导。

    一种基于多变环境下加速退化数据的集成寿命预测方法

    公开(公告)号:CN108520325A

    公开(公告)日:2018-09-11

    申请号:CN201810335391.0

    申请日:2018-04-16

    IPC分类号: G06Q10/04 G06Q10/00 G06K9/62

    摘要: 本发明公开了一种基于多变环境下加速退化数据的集成寿命预测方法,为了解决目前利用加速退化数据进行寿命预测时忽略的多变环境影响问题。首先,利用集成学习中Bagging算法对数据集进行重采样并进行数据集划分;然后,利用采样集数据分别建立基于贝叶斯方法、支持向量机方法和BP神经网络方法的寿命预测子模型;最后,利用集成学习方法中的结合策略对子模型进行输出平均,得到集成寿命预测模型。本发明在考虑多变环境应力影响的同时,可以提高产品寿命预测的稳定性和精度,并提高预测模型的泛化能力。本发明适用于受多变环境影响的产品的寿命预测。