-
公开(公告)号:CN117421558B
公开(公告)日:2024-06-21
申请号:CN202311418406.7
申请日:2023-10-26
申请人: 华中科技大学 , 中国长江电力股份有限公司
IPC分类号: G06F18/20 , G06F18/10 , G06F18/213 , G06F18/214 , G06N3/045 , G06N3/0442 , G06N3/047 , G06N3/08 , G06Q50/06
摘要: 本发明公开了一种梯级水库运行规则提取及其模型训练方法,属于水利技术领域。本发明方法首先收集梯级水库的历史运行数据、流域网格实测降水数据和流域网格预报降水数据,建立水文模型并确定源头水库入库流量预报和子区间网格降水预报的有效预见期;再利用所述有效预见期内各个时段的源头水库入库预报流量和子区间网格预报降水,构建不同有效预见期下的输入因子集;耦合ConvLSTM和LSTM,构建关联水文气象时空信息的梯级水库运行规则提取模型;最后利用输入因子集训练得到最优梯级水库运行规则提取模型。通过对比实验可知,本发明方法构建的梯级水库运行规则提取模型能更为准确地模拟各水库不同时期的出库流量变化过程。
-
公开(公告)号:CN117439190B
公开(公告)日:2024-06-11
申请号:CN202311406784.3
申请日:2023-10-26
申请人: 华中科技大学 , 中国长江电力股份有限公司
IPC分类号: H02J3/46 , G06Q10/0631 , G06Q50/06 , G06N3/006
摘要: 本发明公开了一种水火风系统调度方法、装置、设备及存储介质,属于电力系统调度技术领域。本发明方法首先初始化多元宇宙算法参数,基于水火风系统模型确定待优化变量;之后将待优化变量作为多元宇宙种群任意个体位置,对多元宇宙种群进行随机初始化;随后在多元宇宙算法中引入修正的宇宙膨胀概率、个体历史最优个体探索机制以及全对立学习机制进行种群迭代;最后迭代结束后将待优化变量的全局最优位置作为水火风系统模型的最优调度输出。本发明方法解决了传统调度方法在HTW问题中表现出的多样性表现不足,收敛速度慢以及求解精度低的缺陷。
-
公开(公告)号:CN117439190A
公开(公告)日:2024-01-23
申请号:CN202311406784.3
申请日:2023-10-26
申请人: 华中科技大学 , 中国长江电力股份有限公司
IPC分类号: H02J3/46 , G06Q10/0631 , G06Q50/06 , G06N3/006
摘要: 本发明公开了一种水火风系统调度方法、装置、设备及存储介质,属于电力系统调度技术领域。本发明方法首先初始化多元宇宙算法参数,基于水火风系统模型确定待优化变量;之后将待优化变量作为多元宇宙种群任意个体位置,对多元宇宙种群进行随机初始化;随后在多元宇宙算法中引入修正的宇宙膨胀概率、个体历史最优个体探索机制以及全对立学习机制进行种群迭代;最后迭代结束后将待优化变量的全局最优位置作为水火风系统模型的最优调度输出。本发明方法解决了传统调度方法在HTW问题中表现出的多样性表现不足,收敛速度慢以及求解精度低的缺陷。
-
公开(公告)号:CN117421558A
公开(公告)日:2024-01-19
申请号:CN202311418406.7
申请日:2023-10-26
申请人: 华中科技大学 , 中国长江电力股份有限公司
IPC分类号: G06F18/20 , G06F18/10 , G06F18/213 , G06F18/214 , G06N3/045 , G06N3/0442 , G06N3/047 , G06N3/08 , G06Q50/06
摘要: 本发明公开了一种梯级水库运行规则提取及其模型训练方法,属于水利技术领域。本发明方法首先收集梯级水库的历史运行数据、流域网格实测降水数据和流域网格预报降水数据,建立水文模型并确定源头水库入库流量预报和子区间网格降水预报的有效预见期;再利用所述有效预见期内各个时段的源头水库入库预报流量和子区间网格预报降水,构建不同有效预见期下的输入因子集;耦合ConvLSTM和LSTM,构建关联水文气象时空信息的梯级水库运行规则提取模型;最后利用输入因子集训练得到最优梯级水库运行规则提取模型。通过对比实验可知,本发明方法构建的梯级水库运行规则提取模型能更为准确地模拟各水库不同时期的出库流量变化过程。
-
公开(公告)号:CN111209530A
公开(公告)日:2020-05-29
申请号:CN202010034983.6
申请日:2020-01-14
申请人: 华中科技大学鄂州工业技术研究院 , 华中科技大学
IPC分类号: G06F17/16
摘要: 本发明公开了基于张量分解的异构大数据因子特征提取的方法,所述方法根据N+1阶张量的正交Tucker-N分解模型,将变换后的K个张量数据Y(k)沿第N+1阶进行串联,获得N+1阶张量Y;并对Y进行正交Tucker-N模式分解,获得核心张量F;基于核心张量F,获得所述张量数据X(k)的低维因子特征,不仅对K个张量数据同时进行了降维,且由于对K个张量数据串联后,再进行正交Tucker-N模式分解,其获得的低维因子特征保持原始K个张量数据的全局信息,使任意两个张量数据的低维因子特征距离等于其对应的两个原始张量之间的张量距离,因此,利于后续直接对提取到的低维因子特征进行深度处理与分析,从而获得更准确的分析结果。
-
公开(公告)号:CN111209974A
公开(公告)日:2020-05-29
申请号:CN202010024055.1
申请日:2020-01-14
申请人: 华中科技大学鄂州工业技术研究院 , 华中科技大学
摘要: 本发明公开了基于张量分解的异构大数据核心特征提取的方法,所述方法根据N+1阶张量的正交Tucker-N分解模型,将变换后的K个张量数据Y(k)沿第N+1阶进行串联,获得N+1阶张量Y;并对Y进行正交Tucker-N模式分解,获得核心张量F;基于核心张量F,获得所述张量数据X(k)的低维核心特征,不仅对K个张量数据同时进行了降维,且由于对K个张量数据串联后,再进行正交Tucker-N模式分解,其获得的低维核心特征保持原始K个张量数据的全局信息,使任意两个张量数据的低维核心特征距离等于其对应的两个原始张量之间的张量距离,因此,利于后续直接对提取到的低维核心特征进行深度处理与分析,从而获得更准确的分析结果。
-
公开(公告)号:CN111209529A
公开(公告)日:2020-05-29
申请号:CN202010033945.9
申请日:2020-01-13
申请人: 华中科技大学鄂州工业技术研究院 , 华中科技大学
IPC分类号: G06F17/16
摘要: 本发明公开了一种布尔型数据特征增量更新方法及装置,其中方法包括:获取原始张量和新增张量;根据所述原始张量,获得所述原始张量的R个原始因子矩阵;根据所述新增张量,获得所述新增张量的第K阶对应的多个子张量;根据所述R个原始因子矩阵与第K阶对应的所述多个子张量,获得增量阶因子矩阵;根据所述增量阶因子矩阵以及所述原始因子矩阵对所述新增张量的第M阶的新增因子矩阵进行更新,获得第M阶更新后的新增因子矩阵;将第M阶的所述原始因子矩阵和第M阶对应的所述新增因子矩阵进行特征融合,获得第M阶的更新因子矩阵。本发明解决了目前对于流式布尔型数据更新时产生的大规模重复计算,大量耗费计算资源,计算效率低下的问题。
-
公开(公告)号:CN116543240B
公开(公告)日:2023-09-19
申请号:CN202310824958.1
申请日:2023-07-06
申请人: 华中科技大学
IPC分类号: G06V10/764 , G06V10/774 , G06F17/11 , G06N20/00 , G06F21/55
摘要: 本发明公开了一种面向机器学习对抗攻击的防御方法,属于自动驾驶信息安全领域,该方法在扩散模型中添加相应的条件信息与注意力机制,并在模型的输出后添加认证器。将对抗样本通过扩散模型得到的去噪样本输入认证器得到损失来指导扩散模型的去噪。训练扩散模型能够确保模型可以去除对抗样本中添加的噪声信息,而不改变样本中自身包含的信息。然后,将各待防御的对抗样本输入到已训练的扩散模型中,对抗样本中存在的轻微扰动会被模型去除,从而有效实现机器学习对抗样本受对抗攻击的防御。本发明无需明确对抗攻击类型即可提供有效保护,可以应用于自动驾驶中的分类任务和回归任务的对抗攻击防御。
-
公开(公告)号:CN113191243B
公开(公告)日:2022-05-20
申请号:CN202110447818.8
申请日:2021-04-25
申请人: 华中科技大学
IPC分类号: G06V40/20 , G06V10/774 , G06V20/64 , G06K9/62 , G06N3/04
摘要: 本发明公开了一种基于相机距离的人手三维姿态估计模型建立方法及其应用,属于计算机视觉领域,包括:建立待训练模型;模型中,2D卷积网络以包含人手图像的单目RGB图像为输入,用于估计各关节点二维坐标;第一生成网络用于根据2D卷积网络输出的估计结果估计人手各关节点在手势坐标系下的三维坐标;相机距离学习网络用于根据2D卷积网络和第一生成网络输出估计结果计算相机距离,并按照相机距离手势坐标系下的关节点三维坐标进行平移;第二生成网络用于根据平移后的关节点三维坐标估计相机坐标系下的关节点三维坐标,完成人手三维姿态的估计;构建训练集并对待训练模型进行训练,得到人手三维姿态估计模型。本发明能够提高人手三维姿态估计的准确度。
-
公开(公告)号:CN112398158A
公开(公告)日:2021-02-23
申请号:CN202011162558.1
申请日:2020-10-27
申请人: 国网经济技术研究院有限公司 , 国网四川省电力公司经济技术研究院 , 华中科技大学
摘要: 本发明涉及一种混合高压直流输电系统运行指标分布式归集装置及方法,该归集装置设置为多个,采用分布式趋同的方式连接,由当前归集装置与其他归集装置中的数据收发单元收发高压直流输电系统换流站运行状态物理数据;并将数据采集单元得到的各种指标运行状态物理数据经数据处理单元处理后,由数据收发单元反馈至区域电网运行控制中心;同时,经数据处理单元处理后的各种指标运行数据分别传输至数据存储单元和人机交互单元,由数据存储单元进行存储,由人机交互单元进行显示。本发明能完成对混合高压直流输电系统运行指标的收集和存储任务,为构建混合高压直流输电系统规划模型提供底层实际运行数据,支撑构建混合高压直流输电系统规划指标体系建设。
-
-
-
-
-
-
-
-
-