声振信号构造CNN特征矩阵的断路器储能过程状态辨识方法

    公开(公告)号:CN112241605B

    公开(公告)日:2023-12-19

    申请号:CN201910643289.1

    申请日:2019-07-17

    Abstract: 本发明公开了一种声振信号构造卷积神经网络(CNN)特征矩阵的断路器储能过程状态辨识方法,该方法包括以下内容:首先提出基于峭度和包络相似性的时标对位方法保证声振信号的同步性,然后采用Lyapunov指数‑小波模极大值(L‑小波)检测振动信号起始点,对数据进行重叠式数据扩容后,利用皮尔逊相关系数构造声振信号二维特征矩阵。最后利用CNN对特征矩阵进行训练,利用支持向量机(SVM)代替Soft‑Max分类器来对CNN结构进行优化,使用灰狼优化(GWO)寻找SVM最优参数。优化CNN模型对断路器储能过程

    一种声振信号联合1D-CNN的大型电机故障诊断方法

    公开(公告)号:CN112326210A

    公开(公告)日:2021-02-05

    申请号:CN201910643288.7

    申请日:2019-07-17

    Inventor: 赵书涛 王二旭

    Abstract: 本发明公开了一种声振信号联合一维卷积神经网络(1D‑CNN)故障诊断方法,该方法包括以下内容:首先对采集到的声信号采用背景噪声库联合稀疏表示去除噪声,然后将声音信号进行带通滤波(7kHz‑20kHz),叠加低频振动信号(7kHz内)形成频带更完整的电动机状态表征信息。再对经过滤波提纯处理后信息进行重叠式数据扩容,获取1D‑CNN训练所需大量数据。最后将数据样本输入1D‑CNN进行学习训练,采用局部均值归一化(LRN)和核函数去相关性改进1D‑CNN模型结构,降低了抽油机正负半周工况波动对电动机诊断准确性影响。这是一种针对复杂运行环境下大功率电动机故障诊断的新方法,诊断准确率高,泛化性能好,与传统的电动机故障诊断方法相比优势明显。

    声振信号构造CNN特征矩阵的断路器储能过程状态辨识方法

    公开(公告)号:CN112241605A

    公开(公告)日:2021-01-19

    申请号:CN201910643289.1

    申请日:2019-07-17

    Abstract: 本发明公开了一种声振信号构造卷积神经网络(CNN)特征矩阵的断路器储能过程状态辨识方法,该方法包括以下内容:首先提出基于峭度和包络相似性的时标对位方法保证声振信号的同步性,然后采用Lyapunov指数‑小波模极大值(L‑小波)检测振动信号起始点,对数据进行重叠式数据扩容后,利用皮尔逊相关系数构造声振信号二维特征矩阵。最后利用CNN对特征矩阵进行训练,利用支持向量机(SVM)代替Soft‑Max分类器来对CNN结构进行优化,使用灰狼优化(GWO)寻找SVM最优参数。优化CNN模型对断路器储能过程数据变动较大的情况不敏感,作为一种新的断路器储能过程状态识别方法,大大提高了状态辨识的准确率和泛化性。

Patent Agency Ranking