一种基于多智能体强化学习的无人机集群协同学习方法

    公开(公告)号:CN112131660B

    公开(公告)日:2024-07-26

    申请号:CN202010944781.5

    申请日:2020-09-10

    申请人: 南京大学

    摘要: 本发明公开一种基于多智能体强化学习的无人机集群协同学习方法,构造基于空气动力学的环境模拟器;每个无人机获取并维护本机的局部观测值;作为student,每个无人机获取并维护来自队友的建议观测值;作为teacher,为其他无人机给出指导值;基于本机局部观测值与从队友获取的建议观测值执行动作策略,获取奖励并转移到下一状态;基于MADDPG思想进行训练,直到值网络与策略网络收敛;执行阶段以分布式的方式进行,即每个无人机基于局部观测值和队友提供的建议观测值,通过动作策略执行。本发明可以在成本较低的前提下实现无人机集群之间观测值的互补,实现无人机单独自主决策,解决“主从”结构带来的通信问题。

    一种基于离线强化学习的无人机自主飞行控制方法

    公开(公告)号:CN113110546B

    公开(公告)日:2022-09-23

    申请号:CN202110422019.5

    申请日:2021-04-20

    申请人: 南京大学

    IPC分类号: G05D1/08 G05D1/10

    摘要: 本发明公开一种基于离线强化学习的无人机自主飞行控制方法,包含以下步骤:(1)人为控制无人机执行飞行任务,收集无人机在现实环境中的飞行数据,生成数据集。(2)基于数据集,根据飞行状态和动作设计奖赏函数。(3)基于离线强化学习算法,仅利用数据集训练自主飞行控制策略。(4)在现实环境中,使用自主飞行控制策略操控无人机执行飞行任务,无人机操作员实时监控,测试控制策略性能并收集飞行数据。(5)把收集的新飞行数据加入数据集。(6)迭代执行步骤(2)(3)(4)(5),直到自主飞行控制策略能够完成飞行任务。本发明能够以很低的成本训练出泛化性好、鲁棒的自主飞行控制策略,适用于复杂多变的现实环境。

    一种基于多智能体强化学习的无人机集群高效通信方法

    公开(公告)号:CN113286275A

    公开(公告)日:2021-08-20

    申请号:CN202110441049.0

    申请日:2021-04-23

    申请人: 南京大学

    摘要: 本发明公开一种基于多智能体强化学习的无人机集群高效通信方法,构建无人机飞行环境模拟器;随机选取一架无人机作为队长并标记;每架无人机获取并维护本机的局部观测值,将自身观测值进行编码并发送给队长;队长根据每架无人机的自身观测值,分别对全局观测值进行attention注意力机制处理,根据信息的重要程度来决定信息的权重,继而将计算好的观测值发送给每个队友,作为队友的全局观测值;训练阶段以全局观测值作为训练数据,直到策略网络收敛;执行阶段以分布式的方式进行;对队长的存活给一个额外的奖励。本发明可以在通信开销较小的条件下解决无人机集群集中式信息交互的问题,给予无人机自主决策权。

    一种无人机自主跟拍运动目标的方法

    公开(公告)号:CN112131661B

    公开(公告)日:2024-07-23

    申请号:CN202010946929.9

    申请日:2020-09-10

    申请人: 南京大学

    摘要: 本发明公开一种无人机自主跟拍运动目标的方法,包括在模拟器中训练跟拍虚拟目标,实现步骤为:(1)构建无人机模拟器;(2)在无人机模拟器中采集样本;(3)利用采集样本进行无人机飞行控制策略训练;所述无人机飞行控制策略训练过程中,使用神经网络来表示初始无人机飞行控制策略模型,用当前的初始飞行控制策略模型在无人机模拟器中控制无人机,在无人机模拟器提供的马尔科夫过程中采样,针对收集到的样本,用近端策略优化的方法优化当前初始飞行控制策略模型,直至初始飞行控制策略模型不再提升,得到无人机飞行控制策略模型。相比以往的手工控制无人机航拍的方法,使用强化学习学出的飞行控制策略,由于训练采样丰富,往往能够面对各种复杂情况,有反应灵活、控制平稳、人力成本低等优点。

    结合图象识别与激光雷达点云分割的驾驶环境感知方法

    公开(公告)号:CN113269040B

    公开(公告)日:2024-07-19

    申请号:CN202110445391.8

    申请日:2021-04-25

    申请人: 南京大学

    IPC分类号: G06F16/29

    摘要: 本发明公开一种结合图象识别与激光雷达点云分割的驾驶环境感知方法,包括:(1)在真实道路上,收集地面激光雷达点云数据和图像数据。(2)使用收集的图像数据作为参考,将激光雷达点云数据与图像数据进行标定,标记收集的激光雷达点云数据。(3)初始化点云分割网络,对标记的激光雷达点云数据进行训练,更新网络参数。(4)将训练好的网络移植到无人车工控机中,获得点云所属物体的类别。(5)对图像数据进行识别。(6)对分割后的激光雷达点云数据与图像识别后的图像数据进行融合,获取道路和物体所在的准确位置。本发明实时感知环境,克服了图像识别在天气不好、光线较差的情况下识别效果不佳的缺点。

    一种基于强化学习与网络模型蒸馏的无人机飞行控制方法

    公开(公告)号:CN113110550B

    公开(公告)日:2022-09-23

    申请号:CN202110442229.0

    申请日:2021-04-23

    申请人: 南京大学

    IPC分类号: G05D1/08 G05D1/10

    摘要: 本发明公开一种基于强化学习与网络模型蒸馏的无人机飞行控制方法,构建无人机环境模拟器;基于强化学习算法,在不同场景中进行大规模训练,得到最优控制策略,以此构建无人机飞行控制系统;基于网络模型蒸馏技术,通过教师网络和学生网络计算辅助控制信息,量化当前场景与训练场景的差异,展示强化学习控制策略对当前场景的适应能力,以此构建无人机辅助控制系统。本发明基于强化学习算法,通过在模拟器中大规模训练,使无人机自主学习控制策略,构建无人机控制系统;基于网络模型蒸馏技术,通过量化当前场景与训练场景的差异,展示强化学习控制策略对当前场景的适应程度,以此规避陌生场景,减少安全风险。

    基于强化学习的无人机对抗博弈训练控制方法

    公开(公告)号:CN113282100A

    公开(公告)日:2021-08-20

    申请号:CN202110464589.0

    申请日:2021-04-28

    申请人: 南京大学

    IPC分类号: G05D1/10 G06N20/20

    摘要: 本申请公开了一种基于强化学习的无人机对抗博弈训练控制方法,包括如下步骤:使主智能体与对手池中所有对手对战并统计所述主智能体的胜率;判断所述主智能体的胜率是否满足预设要求;如果所述主智能体的胜率满足预设要求,则根据所述主智能体的胜率选择对抗对手;使主智能体与所述对抗对手训练直至所述主智能体策略收敛。本申请的有益之处在于。本申请的有益之处在于提供了一种行之有效的基于强化学习的无人机对抗博弈训练控制方法从而使主智能体具有更强学习能力。

    基于模仿学习和强化学习算法的无人机飞行控制方法

    公开(公告)号:CN112162564B

    公开(公告)日:2021-09-28

    申请号:CN202011020765.3

    申请日:2020-09-25

    申请人: 南京大学

    IPC分类号: G05D1/08 G05D1/10

    摘要: 本发明公开一种基于模仿学习和强化学习算法的无人机飞行控制方法:创建无人机飞行仿真环境模拟器;定义飞行的基本动作集合;根据飞行基本动作将轨迹数据进行分类;对于每个飞行动作,利用模仿学习学出从飞行基本动作到原始动作的映射网络参数;统计每个基本动作的最小连续行动数量;构建上层的强化学习网络,并将最小连续行动数量作为飞机动作不一致性的惩罚p加入;在模拟器中,获取当前的观测信息和奖励,使用pDQN算法,选取对应飞行基本动作;将飞机自身的状态信息输入到飞行基本行动对应的模仿学习神经网络中,输出模拟器的原始行动;将得到的原始行动输入到模拟器中获取下个时刻的观测和奖励;使用pDQN算法进行训练,直到上层的策略网络收敛。

    一种基于多智能体强化学习的无人机集群协同学习方法

    公开(公告)号:CN112131660A

    公开(公告)日:2020-12-25

    申请号:CN202010944781.5

    申请日:2020-09-10

    申请人: 南京大学

    摘要: 本发明公开一种基于多智能体强化学习的无人机集群协同学习方法,构造基于空气动力学的环境模拟器;每个无人机获取并维护本机的局部观测值;作为student,每个无人机获取并维护来自队友的建议观测值;作为teacher,为其他无人机给出指导值;基于本机局部观测值与从队友获取的建议观测值执行动作策略,获取奖励并转移到下一状态;基于MADDPG思想进行训练,直到值网络与策略网络收敛;执行阶段以分布式的方式进行,即每个无人机基于局部观测值和队友提供的建议观测值,通过动作策略执行。本发明可以在成本较低的前提下实现无人机集群之间观测值的互补,实现无人机单独自主决策,解决“主从”结构带来的通信问题。

    一种固定翼无人机自主控制协作策略训练方法

    公开(公告)号:CN112034888A

    公开(公告)日:2020-12-04

    申请号:CN202010944803.8

    申请日:2020-09-10

    申请人: 南京大学

    IPC分类号: G05D1/10

    摘要: 本发明公开一种固定翼无人机自主控制协作策略训练方法,包含以下步骤:(1)基于动力学构建固定翼无人机操控仿真环境Es,采集飞行员控制无人机的真实轨迹数据,通过监督学习的方式学习得到无人机飞行控制策略;(2)构建简化的剥离了飞行控制的抽象环境Ea,创建分组对抗的两组无人机群,使用APEX_QMIX算法学习得到协作策略;(3)以分层强化学习的方式将飞行控制策略和协作策略进行组合,在仿真环境Es中进学得融合策略;(3)迁移到真实环境。本发明方法在现实场景中意义重大,具有泛化性好,成本低,鲁棒性强等特性。