-
公开(公告)号:CN116533342A
公开(公告)日:2023-08-04
申请号:CN202310368895.3
申请日:2023-04-07
申请人: 南京林业大学
摘要: 本发明公开了一种利用溶剂润胀和蒸发诱导木材自密实化的方法,包括以下步骤:一、采用软化混合溶液对木材进行软化处理;二、采用二甲基亚砜溶液对软化木材进行润胀处理;三、采用去离子水充分置换二甲基亚砜后,将木材放置于空气中,在常温常压下利用水分蒸发过程中形成的毛细管作用力诱导木材细胞收缩,同时伴随纤维素分子间氢键的动态重组,使得细胞壁微纤丝高度取向聚集,从而实现木材高度自密实化。密实化过程无需高温高压,且无需二次热处理定型,显著降低了加工能耗。同时,充分发挥了木材定向排列的微纤丝力学强度优势,采用本方法制备的自密实化木材其顺纹抗拉强度是天然木材的5~45倍,其比强度甚至超过一些工程塑料和轻型合金材料。
-
公开(公告)号:CN114890453A
公开(公告)日:2022-08-12
申请号:CN202210658838.4
申请日:2022-06-10
申请人: 南京林业大学
摘要: 本发明涉及一种利用MXene改性炭化木/金属氧化物复合自支撑电极的方法,属于炭化木改性领域。本发明以MXene为改性剂,通过简单表面负载方式,显著改善炭化木/金属氧化物复合电极的循环性能和倍率特性。该方法通过负载MXene构建稳定的“炭化木‑金属氧化物‑MXene”三明治结构,为金属氧化物提供稳定的限域空间以防止其在充放电过程中脱落,从而显著改善电极循环性能;同时,相互搭接的MXene纳米片充当金属氧化物颗粒间的导电桥梁以提高电子传输速度,从而有效改善电极倍率特性;此外,MXene通过参与电化学反应,可进一步提高电极比电容。因此,MXene改性复合电极兼具高比电容、良好的倍率特性及优异的循环稳定性,可用做高性能电池、超级电容器等储能器件的自支撑申极。
-
公开(公告)号:CN111015847A
公开(公告)日:2020-04-17
申请号:CN201911209919.0
申请日:2019-11-28
申请人: 南京林业大学
摘要: 本发明是等离子体改性碳纤维局部增强层积弯曲胶合木的制造方法,属于木质复合材料制造技术领域。其工艺是将0.5~3mm厚单板烘干调整含水率至6~12%,在单板表面涂布胶粘剂,采用射流型大气压低温等离子体对碳纤维表面进行改性处理,对层积弯曲胶合木进行有限元模拟分析,找出承载最薄弱节点,将多层单板按纵向顺纹层叠,在层积弯曲胶合木承载最薄弱节点处上下两表面的次表层铺设一层等离子体改性碳纤维,而后将板坯放于模具中,通过高频弯曲胶合成型。采用该方法制备的产品在保证弯曲木整体构件强度的前提下,可减小构件截面尺寸,节材率达15%以上,且生产过程简单高效,生产工艺节能环保,生产设备操作简便、且可连续自动化作业。
-
公开(公告)号:CN107089659B
公开(公告)日:2019-03-29
申请号:CN201710259332.5
申请日:2017-04-17
申请人: 南京林业大学
IPC分类号: C01B32/348 , C01B32/354 , H01G11/86 , H01G11/34
摘要: 本发明是射频等离子体改性快速制备酶解木质素基富氮活性炭方法,属于生物质材料领域。其工艺是采用碱性水溶液萃取法对取自于生物燃料乙醇工业化生产线的酶解木质素进行提纯,再经筛选、炭化、KOH活化后得到酶解木质素基活性炭,用氮等离子体对其进行改性后与聚四氟乙烯乳液和乙炔黑混合、碾压、干燥,压制在泡沫镍上制得电极片,将电极片真空浸渍于KOH电解质溶液中,最后与聚乙烯隔膜、集电极、聚四氟乙烯保护外壳以及引线组装成超级电容器。经氮等离子体处理后,在2~10分钟内使酶解木质素基活性炭的比表面积提高5~30%,微孔比例增至95%以上,氮元素含量提高4~12倍,用其制备的超级电容器比电容较处理前提高20~60%。
-
公开(公告)号:CN105856343B
公开(公告)日:2018-05-04
申请号:CN201610205809.7
申请日:2016-03-31
申请人: 南京林业大学
摘要: 本发明是低施胶量环保多层实木复合地板的制造方法,属于人造板制造技术领域。其工艺是将木段旋切成1~3mm木质单板,干燥调整含水率至8~12%,对单板双面进行常压低温等离子体改性处理,通过超声和气旋协同作用,将胶黏剂雾化为直径小于40μm的颗粒喷于单板紧面,单面胶黏剂施加量控制在10~80g/m2,按相邻层单板纤维纹理方向互相垂直组坯,再经热压、覆贴薄木制得低施胶量环保多层实木复合地板,性能符合国家标准要求,甲醛释放量达到E0级,且胶黏剂用量较传统涂胶方式用量下降30~70%,产品品质显著提升,生产成本明显下降。此外这种方法生产工艺节能环保,生产设备操作简便、效率高、可控性好,且可连续自动化作业。
-
公开(公告)号:CN105643737B
公开(公告)日:2018-03-30
申请号:CN201610206057.6
申请日:2016-03-31
申请人: 南京林业大学 , 南京苏曼等离子科技有限公司
IPC分类号: B27G11/00
摘要: 本发明提供一种使单板类人造板产品胶黏剂用量较传统涂胶方式用量下降30~70%的木质薄板低温等离子体改性和微量施胶一体化装置,它包含设备框架、木质薄板传输组件、动力组件、低温等离子体处理组件、超声气旋喷胶组件和控制器组件;低温等离子处理组件包括至少一对介质阻挡放电电极、低温等离子发生器、低温等离子体电源以及冷却排臭氧装置,其中成对电极与进料压辊平行固定在设备框架上;超声气旋喷胶组件包括超声气旋协同作用喷嘴、喷嘴支撑支架、胶量控制阀、管路清洗阀、胶黏剂贮存装置、胶黏剂收集装置和喷胶除味装置,喷嘴支撑支架固定在设备框架上,并位于出料压辊与出料传输辊组间,多个喷嘴可调节平行对称地设置于喷嘴支撑支架上。
-
公开(公告)号:CN114804101B
公开(公告)日:2023-10-27
申请号:CN202210658839.9
申请日:2022-06-10
申请人: 南京林业大学
IPC分类号: C01B32/324 , C01B32/348
摘要: 本发明涉及一种MXene辅助微波辐射制备秸秆基活性炭的方法,属于活性炭制备技术领域。本发明以秸秆为原材料,MXene为微波吸附剂,通过在具有高电阻的秸秆表面负载具有高电导率的MXene纳米片,有效调节材料的阻抗匹配,提升吸波效率。随着温度的升高,MXene表面逐渐生成过渡金属氧化物,其与MXene形成的异质结能够对电子迁移形成散射效应,进一步增强体系吸波效率,从而快速达到活化反应所需温度,最终高效制备可应用于催化、吸附以及储能等多个领域的高附加值秸秆基活性炭。本发明使秸秆变废为宝,提供的高效制备秸秆基活性炭的方法对于促进我国活性炭工业的可持续发展、降低活性炭的生产能耗以及提升生物质基炭材料的生产效率具有重要的现实意义。
-
公开(公告)号:CN114975998A
公开(公告)日:2022-08-30
申请号:CN202210627072.3
申请日:2022-06-02
申请人: 南京林业大学
摘要: 本发明提供了一种利用MXene制备具有稳定结构炭化木自支撑电极的方法,属于炭化木电极材料制备领域,以天然木材为原料,MXene为改性剂,将MXene悬浮液均匀地滴涂在木材上,并通过低温(60℃)加热的方法促使水分蒸发,诱导MXene纳米片在木材细胞壁表面层层组装,形成具有结构保护作用的MXene外壳(占总质量的10‑40%)。随后,将经过MXene改性的木材在氮气保护下进行低温(200‑500℃)碳化处理获得炭化木自支撑电极。本方法有效解决了目前炭化木电极在碳化过程中物理结构稳定性差的问题,并且具有制备能耗低、效率高的特点。此方法制备的炭化木自支撑电极具有优异的电化学性能与尺寸稳定性,可以直接用于电池、电容器等储能设备的组装。
-
公开(公告)号:CN112169810A
公开(公告)日:2021-01-05
申请号:CN202011090769.9
申请日:2020-10-13
申请人: 南京林业大学
IPC分类号: B01J27/02 , B01J21/18 , B01J31/02 , B01J37/10 , B01J37/02 , B01J37/06 , C02F1/30 , C13K13/00 , C09K11/65 , C02F101/30 , C02F101/36 , C02F101/38
摘要: 本发明公开了一种生物质碳点/木材复合光催化材料制备方法,包括以下步骤:S01,对木粉进行处理得到木糖;S02,以获得的木糖为碳源物质,氯化亚砜为硫、氯共掺杂剂,将木糖和氯化亚砜充分溶于去离子水中混合均匀形成起始物质,随后将起始物质转移至水热反应釜内;S03,待起始物质反应结束并冷却至室温后,将得到的反应溶液进行离心,转移至纤维素透析袋内进行透析处理,将提纯后的生物质碳点溶液冷冻干燥,获得纯净的生物质碳点固体;S04,将生物质碳点负载于木质单板上。本发明还公开生物质碳点/木材复合光催化材料及其应用。本发明的一种生物质碳点/木材复合光催化材料及其制备方法和应用,制备过程简单,可以实现工业化生产,且具备无污染、可循环利用的优点。
-
公开(公告)号:CN109502569B
公开(公告)日:2020-07-31
申请号:CN201811606587.5
申请日:2018-12-27
申请人: 南京林业大学
摘要: 本发明公开一种微波合成绿色荧光生物质碳点的方法,包括以下步骤:(1)将木糖充分溶解于稀的酸溶液或去离子水中,并加入氮掺杂剂间苯二胺混合均匀,得到起始物质;(2)将步骤(1)得到的起始物质转移至反应管并置于环形聚焦单模微波合成反应器的密闭反应腔内进行微波处理;(3)待反应结束并冷却至室温后,对产物进行提纯得到生物质碳点的水溶液;(4)对生物质碳点水溶液进行冷冻干燥使水分完全散失,最终得到纯的生物质碳点固体。本发明还公开一种微波合成的绿色荧光生物质碳点的应用,用于防伪印刷领域。本发明采用微波处理加热速度快,合成效率高,能够显著缩短生物质碳点的合成时间,获得的碳点的相对荧光量子产率高达73.6%。
-
-
-
-
-
-
-
-
-