-
公开(公告)号:CN113549902A
公开(公告)日:2021-10-26
申请号:CN202110788498.2
申请日:2021-07-13
申请人: 南京邮电大学 , 南京亿浦先进材料研究院有限公司
IPC分类号: C23C16/513 , C23C16/455 , C23C16/26 , C23C16/32 , C23C16/34
摘要: 本发明公开了一种C/TiC/TiN/TiAlN复合涂层制备装置及其方法。本发明提出的装置主要包括弧光放电等离子体装置、射频等离子体装置和磁过滤筛选装置三部分,充分组合利用三部分的技术优势,从而达到制备优质涂层的目的。本发明提供的复合涂层的制备方法,包括以下步骤:将固态源进行弧光放电后得到弧光放电等离子体;将气态源进行射频处理后得到射频等离子体;将所述两种等离子体经过磁过滤去除较大颗粒后共沉积在基底表面,从而得到复合涂层。本发明提供的制备方法为制备不同成分的复合涂层提供了新的合成思路,且制备得到的复合涂层材料具有高均匀性,高致密性以及优异的机械性能。
-
公开(公告)号:CN113511638A
公开(公告)日:2021-10-19
申请号:CN202110737243.3
申请日:2021-06-30
申请人: 南京邮电大学 , 南京亿浦先进材料研究院有限公司
IPC分类号: C01B21/076 , C01B17/02 , B82Y40/00 , B82Y30/00 , H01M4/38 , H01M4/62 , H01M10/052
摘要: 本发明公开了一种等离子体化学气相共沉积TiN‑S复合正极材料的制备方法,将二氧化钛P25粉末制备成自支撑氧化物纳米线薄膜,然后对自支撑氧化物纳米线薄膜氮化得到自支撑多孔氮化物纳米线薄膜,再以自支撑多孔氮化物纳米线薄膜为载体材料,利用等离子体化学气相共沉积技术制备自支撑多孔氮化物纳米线/S复合正极材料。本发明利用等离子体化学气相共沉积技术,将硫沉积到自支撑多孔氮化物纳米线薄膜丰富的相互连通的孔隙结构内,利用氮化物的导电性、固硫能力和高催化活性,达到了高硫载量和高硫利用率的协同,构建了高堆积密度、高硫面载量和高能量密度的硫正极。
-
公开(公告)号:CN113594400B
公开(公告)日:2023-01-24
申请号:CN202110793972.0
申请日:2021-07-13
申请人: 南京邮电大学 , 南京亿浦先进材料研究院有限公司
IPC分类号: H01M4/04 , H01M4/38 , H01M4/62 , H01M10/054 , C23C16/02 , C23C16/26 , C23C16/28 , C23C16/505
摘要: 本发明揭示了一种磁过滤技术制备钠离子电池负极材料的方法,具体为一种预先进行功能化处理多壁碳纳米管,并将多壁碳纳米管做基底,再通过磁过滤筛选射频等离子体的化学气相共沉积技术制备功能化多壁碳纳米管与半金属靶材源的复合材料载体。这种结构中的功能化多壁碳纳米管作为导电骨架提高了涂敷载体的结构稳定性和导电性能,半金属靶材源作为活性材料,其上的硒和磷与功能化多壁碳纳米管骨架具有高的化学结合力,提高了电极的固硒和固磷性能、多硒化物及磷化物转化动力学和循环寿命。
-
公开(公告)号:CN113511638B
公开(公告)日:2022-12-06
申请号:CN202110737243.3
申请日:2021-06-30
申请人: 南京邮电大学 , 南京亿浦先进材料研究院有限公司
IPC分类号: C01B21/076 , C01B17/02 , B82Y40/00 , B82Y30/00 , H01M4/38 , H01M4/62 , H01M10/052
摘要: 本发明公开了一种等离子体化学气相共沉积TiN‑S复合正极材料的制备方法,将二氧化钛P25粉末制备成自支撑氧化物纳米线薄膜,然后对自支撑氧化物纳米线薄膜氮化得到自支撑多孔氮化物纳米线薄膜,再以自支撑多孔氮化物纳米线薄膜为载体材料,利用等离子体化学气相共沉积技术制备自支撑多孔氮化物纳米线/S复合正极材料。本发明利用等离子体化学气相共沉积技术,将硫沉积到自支撑多孔氮化物纳米线薄膜丰富的相互连通的孔隙结构内,利用氮化物的导电性、固硫能力和高催化活性,达到了高硫载量和高硫利用率的协同,构建了高堆积密度、高硫面载量和高能量密度的硫正极。
-
公开(公告)号:CN113387707A
公开(公告)日:2021-09-14
申请号:CN202110733946.9
申请日:2021-06-30
申请人: 南京邮电大学 , 南京亿浦先进材料研究院有限公司
摘要: 一种弧光放电等离子体磁过滤气相沉积碳包覆氮化物多孔陶瓷的制备方法,属于锂硫电池电极材料制备技术领域,所述方法包括:将氧化钛粉体、纳米炭黑、粘结剂、造孔剂等粉体用球磨机球磨混合之后,利用压片机粉末压片的方法得到氧化物多孔陶瓷生坯;将生坯放置于管式炉中高温气氛烧结,得到氮化物多孔陶瓷;之后将氮化物多孔陶瓷置于化学气相共沉积装置中,在其孔隙结构中沉积S,得到氮化物多孔陶瓷含硫电极;最后利用弧光放电等离子体磁过滤气相沉积结合固体源,在含硫氮化物多孔陶瓷含硫电极表面包覆一层碳,制备得到碳包覆氮化物多孔陶瓷含硫电极,这种结构中的氮化物作为导电骨架不但可以提高含硫载体的结构稳定性和导电性能,而且氮化物本身对多硫化物的转化以及吸附性能方面表现优异。特别的,在氮化物多孔陶瓷含硫电极表面进行碳包覆,可以进一步抑制多硫化物的“穿梭效应”,对于提升锂硫电池S含量、电池循环寿命等方面有显著效果。
-
公开(公告)号:CN113564523A
公开(公告)日:2021-10-29
申请号:CN202110788510.X
申请日:2021-07-13
申请人: 南京邮电大学 , 南京亿浦先进材料研究院有限公司
摘要: 本发明公开了一种镀碳多孔铝集流体的制备装置及其制备方法,属于锂离子电池技术领域。本发明所述制备方法涉及一种集磁过滤、弧光放电激发和等离子沉积于一体的特殊装置,将sp2碳牢固地沉积在多孔铝的表面,形成高质量的碳涂层,大大提高了三维多孔铝(3D Al)的表面导电性和抗腐蚀性能,从而有效改善电池的整体性能和延长使用寿命。本发明提出的制备方法操作简单,易于规模化,具有巨大的实际应用价值。
-
公开(公告)号:CN113511679A
公开(公告)日:2021-10-19
申请号:CN202110733343.9
申请日:2021-06-30
申请人: 南京邮电大学 , 南京亿浦先进材料研究院有限公司
摘要: 一种制备碳包覆二氧化钒正极材料的方法,将水热反应和弧光放电技术相结合,首先通过水热反应合成纯度较高、结晶性较好的二氧化钒材料,然后将二氧化钒材料均匀涂敷在不锈钢网集流体上,最后通过弧光放电技术去轰击靶材‑碳源,可以得到等离子体态的碳正离子接下来用磁过滤设备对不同的等离子体态的碳正离子施加有效磁场从而可以过滤掉一些质量不均一的碳正离子,而纯度较高质量较为均一的碳正离子就被沉积到涂敷在集流体上的二氧化钒基底上从而得到具有厚度均一、纯度高的碳层的碳包覆二氧化钒复合材料。
-
公开(公告)号:CN113517374B
公开(公告)日:2023-03-21
申请号:CN202110737254.1
申请日:2021-06-30
申请人: 南京邮电大学 , 南京亿浦先进材料研究院有限公司
IPC分类号: H01L31/18 , H01L31/0336 , C23C14/08 , C23C14/32 , B82Y40/00
摘要: 本发明公开了一种氧化锌包覆氧化铜纳米线的异质结阵列的制备方法,本发明在液相法生长的氧化铜纳米线的基础上,将其作为反应衬底,采用弧光放电等离子体技术将氧化锌颗粒均匀沉积在氧化铜纳米线表面,形成均匀稳定的氧化锌修饰的氧化铜纳米线异质结阵列结构。本发明的好处在于利用新型气相沉积技术可在氧化铜纳米线表面一步沉积氧化锌颗粒,且氧化锌涂层与氧化铜纳米线表面具有强的结合力,且可大规模制备。
-
公开(公告)号:CN113845099A
公开(公告)日:2021-12-28
申请号:CN202110733925.7
申请日:2021-06-30
申请人: 南京邮电大学 , 南京亿浦先进材料研究院有限公司
IPC分类号: C01B25/14 , C23C14/06 , C23C14/32 , H01M4/58 , H01M10/054
摘要: 一种弧光放电技术用于制备CoSP钠电负极材料的方法,制备出CoSP的方法是先通过水热法制备出氢氧化钴前驱体,然后分别先后对硫单质和磷单质进行弧光放电处理,处理后的正离子通过磁过滤进行筛选,最后结合化学气相沉积将其沉积到靶材上便可以得到硫、磷双掺杂的CoSP空心球材料,将其应用到钠离子电池中可以实现较为优异的电化学性能。在0.1 A g‑1电流密度下,在循环100圈后,其比容量仍可高达633 mAh g‑1,2 A g‑1的电流密度下,经过400圈循环后,其比容量高达456 mAh g‑1,体现其较好的循环稳定性。
-
公开(公告)号:CN113594541A
公开(公告)日:2021-11-02
申请号:CN202110789008.0
申请日:2021-07-13
申请人: 南京邮电大学 , 南京亿浦先进材料研究院有限公司
IPC分类号: H01M10/0562 , H01M10/052 , H01M10/058 , C23C14/02 , C23C14/06 , C23C14/16 , C23C14/32
摘要: 本发明揭示了一种等离子体磁过滤技术制备LAGP基固体电解质的方法,该方法包括以下步骤:S1:将沉积基底固定在化学气相反应室中的可旋转基座上;S2:将弧光放电源、磁过滤管、化学气相反应室进行抽取真空;S3:采用等离子对沉积基底的镀膜表面进行清洗,去除沉积基底镀膜表面的油污及杂质;S4:将弧光放电固体源引入磁过滤管中进行筛选;S5:关闭弧光放电、磁过滤电源,释放真空度,待恢复至常压状态后打开化学气相反应室取出样品,将所得样品翻转180°,重复如上步骤进行再次沉积,最终得到LAGP基固体电解质。该方法可以有效地降低LAGP与正极材料直接的界面电阻从而使其易于形成稳定的SEI膜。
-
-
-
-
-
-
-
-
-