一种基于双极大值的射频指纹特征提取和识别方法

    公开(公告)号:CN109587136A

    公开(公告)日:2019-04-05

    申请号:CN201811477070.0

    申请日:2018-12-05

    IPC分类号: H04L29/06 G06K9/00

    摘要: 本发明公开了一种基于双极大值的射频指纹特征提取和识别方法,包括以下步骤:S1.接收端分别接收来自多个射频发射器的信号,并进行样本采集,得到样本集D;S2.从样本集D中选取样本数据,提取该样本数据中的极大值,将选取出来的极大值组成样本特征;S3.按照步骤S2依次对样本集D中的每一个样本数据进行处理,得到双极大值特征集;S4.基于机器类学习算法,在双极大值数据集的基础上训练分类器,对未知身份的射频收发器进行识别。本发明利用双极大值提取的方式,有效减少了提取得到的特征维数,进而降低计算复杂度,同时提高了特征的类别可分性能。

    一种基于双极大值的射频指纹特征提取和识别方法

    公开(公告)号:CN109587136B

    公开(公告)日:2020-06-19

    申请号:CN201811477070.0

    申请日:2018-12-05

    IPC分类号: H04L29/06 G06K9/00

    摘要: 本发明公开了一种基于双极大值的射频指纹特征提取和识别方法,包括以下步骤:S1.接收端分别接收来自多个射频发射器的信号,并进行样本采集,得到样本集D;S2.从样本集D中选取样本数据,提取该样本数据中的极大值,将选取出来的极大值组成样本特征;S3.按照步骤S2依次对样本集D中的每一个样本数据进行处理,得到双极大值特征集;S4.基于机器类学习算法,在双极大值数据集的基础上训练分类器,对未知身份的射频收发器进行识别。本发明利用双极大值提取的方式,有效减少了提取得到的特征维数,进而降低计算复杂度,同时提高了特征的类别可分性能。

    一种基于机器学习的边缘计算克隆节点识别方法

    公开(公告)号:CN108932535B

    公开(公告)日:2019-07-02

    申请号:CN201810774781.8

    申请日:2018-07-13

    IPC分类号: G06K9/62 G06N3/08

    摘要: 本发明公开了一种基于机器学习的边缘计算克隆节点识别方法,包括以下步骤:S1.合法节点与边缘计算节点进行上层认证;S2.提取合法节点i和未知节点j的身份声明信息;S3.比较i,j节点的ID是否一致,若一致则进入步骤S4.若不一致,返回步骤S2;S4.提取i,j节点的信道信息,利用检验统计量计算相关程度,并判断是否是克隆节点,若是,进入步骤S5,若否,返回步骤S2;S5.生成数据集T;S6.采用机器学习算法中的分类算法,根据二分类的数据集进行训练,直到生成满足识别率达标的模型;S7.边缘计算节点利用达到要求的模型对新未知节点u,识别节点身份。本发明提供了一种基于机器学习的边缘计算克隆节点识别方法,适用于边缘计算场景,具有识别率高的优势。

    一种基于机器学习的边缘计算克隆节点识别方法

    公开(公告)号:CN108932535A

    公开(公告)日:2018-12-04

    申请号:CN201810774781.8

    申请日:2018-07-13

    IPC分类号: G06K9/62 G06N3/08

    摘要: 本发明公开了一种基于机器学习的边缘计算克隆节点识别方法,包括以下步骤:S1.合法节点与边缘计算节点进行上层认证;S2.提取合法节点i和未知节点j的身份声明信息;S3.比较i,j节点的ID是否一致,若一致则进入步骤S4.若不一致,返回步骤S2;S4.提取i,j节点的信道信息,利用检验统计量计算相关程度,并判断是否是克隆节点,若是,进入步骤S5,若否,返回步骤S2;S5.生成数据集T;S6.采用机器学习算法中的分类算法,根据二分类的数据集进行训练,直到生成满足识别率达标的模型;S7.边缘计算节点利用达到要求的模型对新未知节点u,识别节点身份。本发明提供了一种基于机器学习的边缘计算克隆节点识别方法,适用于边缘计算场景,具有识别率高的优势。