-
公开(公告)号:CN118655946A
公开(公告)日:2024-09-17
申请号:CN202410969663.8
申请日:2024-07-19
申请人: 南昌工程学院 , 江西变压器科技股份有限公司
IPC分类号: G05F1/56
摘要: 本发明公开了一种改进光伏最大功率点追踪方法及装置,该方法获取光伏发电系统的当前开路电压和短路电流作为鹦鹉优化算法输入参数,初始化鹦鹉种群参数,引入改进的反向学习策略跳出当前位置,扩大鹦鹉种群的搜索范围,设计鹦鹉种群不同的行为作为鹦鹉优化算法更新规则,对鹦鹉种群初始化参数进行寻优,引入基于莱维增量和高斯游走的优化策略对鹦鹉种群的停留行为进行改进,帮助算法跳出局部最优;迭代直到最大迭代次数,迭代结束将最大输出电压定为全局最优值,当输出功率变化率大于输出功率变化率阈值时,重新迭代。本发明解决了传统的最大功率点跟踪算法在光照突变的环境下求解精度低以及可能陷入局部最优的问题。
-
公开(公告)号:CN117807896B
公开(公告)日:2024-04-30
申请号:CN202410228085.2
申请日:2024-02-29
申请人: 南昌工程学院 , 江西变压器科技股份有限公司
IPC分类号: G06F30/27 , G06N3/006 , G01R19/00 , G06F111/04
摘要: 本发明公开了一种电解水制氢系统电磁暂态电压信号分解方法及系统,该方法通过电压传感器实时采集整流变压器一次侧的电压信号;使用变模态分解法对所得电压信号进行变模态分解;在变模态分解过程中,使用改进金豺优化算法优化变模态分解方法的模态数和惩罚因子,得到变模态分解法的最优模态数和最优惩罚因子,输出在最优模态数和最优惩罚因子条件下变模态分解所得模态分量;最后根据分解所得模态分量判断光伏发电系统是否发生能量跌落从而引起电磁暂态冲击。本发明使用改进金豺优化算法优化变模态分解方法,并对整流变压器一次侧的电压信号进行分析,可判断能量跌落引起的电磁暂态冲击。
-
公开(公告)号:CN117807896A
公开(公告)日:2024-04-02
申请号:CN202410228085.2
申请日:2024-02-29
申请人: 南昌工程学院 , 江西变压器科技股份有限公司
IPC分类号: G06F30/27 , G06N3/006 , G01R19/00 , G06F111/04
摘要: 本发明公开了一种电解水制氢系统电磁暂态电压信号分解方法及系统,该方法通过电压传感器实时采集整流变压器一次侧的电压信号;使用变模态分解法对所得电压信号进行变模态分解;在变模态分解过程中,使用改进金豺优化算法优化变模态分解方法的模态数和惩罚因子,得到变模态分解法的最优模态数和最优惩罚因子,输出在最优模态数和最优惩罚因子条件下变模态分解所得模态分量;最后根据分解所得模态分量判断光伏发电系统是否发生能量跌落从而引起电磁暂态冲击。本发明使用改进金豺优化算法优化变模态分解方法,并对整流变压器一次侧的电压信号进行分析,可判断能量跌落引起的电磁暂态冲击。
-
公开(公告)号:CN117420875A
公开(公告)日:2024-01-19
申请号:CN202311750496.X
申请日:2023-12-19
申请人: 南昌工程学院 , 江西变压器科技股份有限公司
IPC分类号: G05F1/67
摘要: 本发明公开了一种基于边界搜索算法的光伏最大功率点追踪方法及装置,该方法获取光伏发电系统的当前开路电压和短路电流,引入MPPT边界搜索算法的边界更新公式作为矮猫鼬算法边界;利用肯特混沌映射对矮猫鼬种群进行初始化;以个体的适应度概率值的大小选择alpha组;然后alpha组、睡眠丘、scout组位置更新;迭代直到最大迭代次数,迭代结束将最大输出电压定为全局最优值,当输出功率变化率大于输出功率变化率阈值时,重新迭代。本发明解决了传统的最大功率点跟踪算法求解精度低收敛速度慢以及可能陷入局部最优的问题。
-
公开(公告)号:CN117709010A
公开(公告)日:2024-03-15
申请号:CN202311633043.9
申请日:2023-11-29
申请人: 国网湖北省电力有限公司超高压公司 , 国网湖北省电力有限公司电力科学研究院 , 南昌工程学院
发明人: 邓华璞 , 罗浪 , 杨丰帆 , 张子熙 , 武晓蕊 , 赵泽予 , 李佳 , 况静 , 胡晶 , 马雯君 , 贺佳慧 , 童歆 , 张露 , 韩煦 , 侯成 , 吕嘉威 , 许志浩 , 康兵 , 丁贵立 , 王宗耀
IPC分类号: G06F30/17 , G06F30/27 , G16C20/70 , G06N3/084 , G06F119/08 , G06F119/02
摘要: 本发明公开了一种基于OCSSA‑BP的变压器绝缘油溶解气体分析方法,构建变压器油中溶解气体成分以及含量数据组成的油中溶解气体监测数据集,油中溶解气体监测数据集作为BP神经网络输入量,变压器故障类型为输出量;通过麻雀优化算法优化BP神经网络的权重和阈值,返回最优权值和最优阈值;构建基于OCSSA‑BP的变压器绝缘油溶解气体分析模型,实现对于溶解气体成分及浓度的分析,从而得到变压器故障诊断结果。本发明采用融合鱼鹰和柯西变异的麻雀优化算法(OCSSA)作为BP神经网络的优化算法,对BP神经网络的权值及阈值进行优化,高了分析效率及故障识别准确率。
-
公开(公告)号:CN117708697A
公开(公告)日:2024-03-15
申请号:CN202311633019.5
申请日:2023-11-29
申请人: 国网湖北省电力有限公司超高压公司 , 国网湖北省电力有限公司电力科学研究院 , 南昌工程学院
发明人: 邓华璞 , 罗浪 , 杨丰帆 , 张子熙 , 武晓蕊 , 赵泽予 , 李佳 , 况静 , 胡晶 , 马雯君 , 贺佳慧 , 童歆 , 张露 , 李旭东 , 袁军 , 侯成 , 吕嘉威 , 许志浩 , 康兵 , 丁贵立 , 王宗耀
IPC分类号: G06F18/2415 , G06F18/2431 , G06F18/213 , G06N3/084 , G06N3/047 , G06N3/006
摘要: 本发明属于电力设备监测技术领域,涉及一种基于PNN网络的变压器DGA故障诊断方法,选取变压器油中溶解气体成分及含量的监测数据组成DGA数据集,将DGA数据集进行最小‑最大值归一化处理,对PNN网络的平滑参数进行初始化,根据初始化参数搭建PNN网络,并将训练集输入PNN网络;将PNN网络的平滑参数作为寻优参数,并以PNN网络的故障诊断准确率作为适应度;采用改进的蛇优化算法的得到最优适应度及对应的平滑参数;基于最优平滑参数构建基于PNN网络的变压器DGA故障诊断模型,输入待诊断数据,获取变压器故障诊断结果。本发明通过改进的蛇优化算法优化PNN网络,提供了故障识别准确率。
-
-
公开(公告)号:CN115687952B
公开(公告)日:2023-11-07
申请号:CN202310000630.8
申请日:2023-01-03
申请人: 南昌工程学院
摘要: 发明公开了一种基于黎曼流形聚类的配电网线变关系辨识方法及装置,该方法将电压时间序列划分为多个电压时间子序列,每个电压时间子序列的所有点的特征向量组成电压时间子序列的特征矩阵;电压时间序列之间的距离由电压时间子序列之间的平均距离计算;以不同配变的电压时间序列的特征矩阵作为数据集进行黎曼流形聚类;通过对聚类结果的分析以实现错误配变的检测。本发明使用了大数据挖掘中的思想,有效解决了传统辨识方法中存在的校核阈值难以确定以及多特征量校核时的特征量选取困难的问题。
-
公开(公告)号:CN116316871A
公开(公告)日:2023-06-23
申请号:CN202211629267.8
申请日:2022-12-16
申请人: 国网江西省电力有限公司供电服务管理中心 , 南昌工程学院 , 国网江西省电力有限公司
摘要: 本发明涉及柔性负荷控制技术领域,具体涉及到一种计及多类型柔性负荷的分层协调控制方法,包括系统调度层、负荷控制层和设备控制层可将优化调度架构分为3部分:系统调度层为电网控制中心;负荷控制层为聚合商;设备控制层为柔性柔性负荷资源群。柔性负荷控制层有承上启下的作用,上面向电网控制中心,下对接柔性负荷资源。根据控制目标的不同,将柔性负荷聚合商作为分界线:上半部分根据电网控制中心与柔性负荷聚合商来制定相应的控制策略;下半部分负荷聚合商来控制柔性负荷资源群。在此基础上,建立以了以系统运行成本最小的经济最优日前优化调度模型,采用改进的海鸥优化算法求解,通过本发明,以实现大规模柔性负荷资源的协调优化运行。
-
公开(公告)号:CN115240122A
公开(公告)日:2022-10-25
申请号:CN202211158753.6
申请日:2022-09-22
申请人: 南昌工程学院
IPC分类号: G06V20/40 , G06V10/30 , G06V10/764 , G06V10/774 , G06V10/82 , G06N3/04 , G06N3/08
摘要: 本发明涉及一种基于深度强化学习的空气预热器区域识别方法,选取视频流中运行状态图像的识别区域,并选取模板帧,将视频流中运行状态图像都送入已经训练好的最优支持向量机模型进行分类,随后使用NanoDet模型对分类得到的运行状态图像的识别区域进行检测,得到所需特征点,以模板帧为NanoDet模型输出结果进行特征点仿射匹配,完成对检测帧的网格区域识别,从而对空气预热器转子的网格区域识别。本发明使用支持向量机模型对视频流进行分类得到最佳检测帧,使用NanoDet模型对最佳检测帧进行检测,最后使用仿射变换得到运行状态图像中其他区域的具体位置,可以较好完成空气预热器区域定位任务。
-
-
-
-
-
-
-
-
-