基于改进YOLOv5的GIS红外特征识别系统及方法

    公开(公告)号:CN116342894B

    公开(公告)日:2023-08-08

    申请号:CN202310612697.7

    申请日:2023-05-29

    摘要: 本发明公开了一种基于改进YOLOv5的GIS红外特征识别系统及方法,GIS红外图像采集模块采集GIS设备部件红外图像,GIS红外特征识别模块内置基于改进YOLOv5的GIS红外目标检测网络模型,基于改进YOLOv5的GIS红外目标检测网络模型用于GIS设备部件识别;所述基于改进YOLOv5的GIS红外目标检测网络模型包括主干网络、颈部网络、头部网络三部分;将CA注意力模块与主干网络中对应的CSP模块相结合;在颈部网络中,将传统的卷积层替换为GS卷积层,在保持足够精度的同时降低了计算和网络结构的复杂性;在噪点较多、目标较多的情况下使用本发明对GIS设备部件进行识别,具有良好的识别效果。

    基于改进YOLOv5的GIS红外特征识别系统及方法

    公开(公告)号:CN116342894A

    公开(公告)日:2023-06-27

    申请号:CN202310612697.7

    申请日:2023-05-29

    摘要: 本发明公开了一种基于改进YOLOv5的GIS红外特征识别系统及方法,GIS红外图像采集模块采集GIS设备部件红外图像,GIS红外特征识别模块内置基于改进YOLOv5的GIS红外目标检测网络模型,基于改进YOLOv5的GIS红外目标检测网络模型用于GIS设备部件识别;所述基于改进YOLOv5的GIS红外目标检测网络模型包括主干网络、颈部网络、头部网络三部分;将CA注意力模块与主干网络中对应的CSP模块相结合;在颈部网络中,将传统的卷积层替换为GS卷积层,在保持足够精度的同时降低了计算和网络结构的复杂性;在噪点较多、目标较多的情况下使用本发明对GIS设备部件进行识别,具有良好的识别效果。