用于视网膜血管不确定边界精准分割的三支U-Net方法

    公开(公告)号:CN114972279A

    公开(公告)日:2022-08-30

    申请号:CN202210632508.8

    申请日:2022-06-06

    申请人: 南通大学

    摘要: 本发明涉及医学信息智能处理技术领域,尤其涉及用于视网膜血管不确定边界精准分割的三支U‑Net方法。本发明利用数学形态学的膨胀和腐蚀算子对血管边界标签不确定性进行描述,基于膨胀和腐蚀算子分别构建不确定边界的上界和下界,得到血管边界的极大值和极小值,将带有不确定信息的边界映射到一个范围之内;将边界的不确定性表示与损失函数相结合并设计三支损失函数;利用三支损失函数的总损失,采用随机梯度下降算法训练网络参数;设计并实现具有眼底数据采集、视网膜血管智能精准分割以及辅助诊断功能的视网膜血管智能分割辅助诊断应用系统。本发明可以显著提升视网膜血管不确定边界分割的准确率,为患者提供个性化医疗服务。

    一种基于粗糙集神经网络的眼底视网膜血管图像分割方法

    公开(公告)号:CN111815574B

    公开(公告)日:2022-08-12

    申请号:CN202010558465.4

    申请日:2020-06-18

    申请人: 南通大学

    摘要: 本发明提供了一种用于眼底视网膜血管图像分割的粗糙集神经网络方法,包括如下步骤:S10图像预处理,获得基于粗糙集增强眼底视网膜血管图像;S20构建U‑net神经网络模型;S30利用粒子群优化算法(PSO)对所述U‑net神经网络模型进行优化训练,获得PSO‑U‑net神经网络模型;以及S40将待测彩色眼底视网膜血管图像采用粗糙集理论进行图像增强预处理后使用所述PSO‑U‑net神经网络模型对所述待测彩色眼底视网膜血管图像分割。本发明的一种用于眼底视网膜血管图像分割的粗糙集神经网络方法,减少了医护人员的工作量,避免了医护人员经验和技能的差别对同一幅眼底图像分割结果存在的差异,有效的进行彩色眼底视网膜血管图像分割,获得更高的分割精度和效率。

    一种用于慢性肾病病历分类的粗糙证据粒球Spark方法

    公开(公告)号:CN114860940A

    公开(公告)日:2022-08-05

    申请号:CN202210630111.5

    申请日:2022-06-06

    申请人: 南通大学

    IPC分类号: G06F16/35 G16H10/60 G06K9/62

    摘要: 本发明涉及到医学信息智能处理领域,具体涉及一种用于慢性肾病病历分类的粗糙证据粒球Spark方法。首先在主节点上读取慢性肾病病历数据,并将该数据集划分为训练集和测试集;接着在子节点上将训练子集样本并行划分生成多个粗糙证据粒球;然后利用基于粗糙证据粒球的Spark并行病理属性约简方法来获得训练子集的病理属性约简子集,并更新所有训练子集和测试集的病理属性集;最后通过Spark并行化的粗糙证据粒球邻域分类方法获得测试集样本的预测类别标签结果。本发明可以有效地去除大规模慢性肾脏病历数据中冗余的病理属性,并利用粗糙证据减少冗余样本和异常样本对决策过程的影响,从而提升了大规模慢性肾脏病历数据的分类精度和计算效率。

    一种用于眼底血管图像聚类分割的近似骨架蛙群编号方法

    公开(公告)号:CN110930412B

    公开(公告)日:2022-04-22

    申请号:CN201911200695.7

    申请日:2019-11-29

    申请人: 南通大学

    摘要: 本发明涉及到眼底血管图像聚类操作技术领域,具体来说涉及一种用于眼底血管图像聚类分割的近似骨架蛙群编号方法。本发明借助聚类方法,对眼底图像进行分割处理,根据病变点高亮的特性对病变点进行定位和剔除。为了获得更好的聚类分割效果,采用智能算法中较为有效且便于理解的混合蛙跳算法对K‑means算法进行改进并使用近似骨架进一步充分利用算法获得的局部最优解,改进后的算法能有效克服原始K‑means算法易于收敛至局部最优而无法有效进行图像分割缺点,获得更好的眼底血管聚类分割效果,更准确的分离出眼底血管的病变点。

    一种用于微血管瘤病历图像的超平面近邻分类方法

    公开(公告)号:CN111242156B

    公开(公告)日:2022-02-08

    申请号:CN201911104118.8

    申请日:2019-11-13

    申请人: 南通大学

    摘要: 本发明公开一种用于微血管瘤病历图像的超平面近邻分类方法。该方法首先对糖尿病性眼底图像数据进行预处理和分割操作,从处理后的眼底病历图像中提取出微血管瘤病历图像的病变区域;接着将微血管瘤病变的图像区域形态学特征、纹理特征及灰度特征转化为l维数据向量xi;然后将数据分为训练数据Xtr和测试数据Xte,通过对训练数据Xtr进行训练得到一个包括分类超平面Hyper、支持向量集合Xsv、距离阈值t、最近邻居个数k、和谱哈希编码码长nb的高效分类模型;最后测试数据Xte预测时依据测试样本到分类超平面Hyper的距离与距离阈值t的关系,分别采用支持向量机模型和融合谱哈希算法的近邻算法进行预测,并综合相关预测结果。本发明能对提取出的眼底病历中微血管瘤病历图像特征进行快速有效分类,具有较高的分类准确率,大大降低了微血管瘤病历图像特征分类的执行时间。

    基于双重自适应邻域半径的多粒度乳腺癌基因分类方法

    公开(公告)号:CN113838532A

    公开(公告)日:2021-12-24

    申请号:CN202110845531.0

    申请日:2021-07-26

    申请人: 南通大学

    摘要: 本发明提供了一种基于双重自适应邻域半径的多粒度乳腺癌基因分类方法,读取大规模基因位点数据并做归一化处理,并对大规模基因位点进行数据分析;利用轮廓系数和PCA降维可视化相结合方式,选取最佳K值,调整信息粒化的模型;其次,使用启发式约简算法分别实现基于簇心距离自适应邻域半径的多粒度属性约简基于属性包含度的邻域半径的多粒度属性约简,并采用SVM支持向量机机器学习分类算法对乳腺癌基因大数据进行分类和预测。本发明的有益效果是:调整惩罚项使模型在乳腺癌基因分类具有较高的准确率和召回率,去除大规模数据中冗余属性,提高了计算效率,利用样本之间的支持信息,提升了乳腺癌数据分类的效率和精度。

    用于大规模脑核磁分割的最大熵多阈值蚁群进化Spark方法

    公开(公告)号:CN113744228A

    公开(公告)日:2021-12-03

    申请号:CN202110995542.7

    申请日:2021-08-27

    申请人: 南通大学

    摘要: 本发明提供了一种用于大规模脑核磁分割的最大熵多阈值蚁群进化Spark方法,属于医学信息智能处理区域技术领域。其技术方案为:首先,读取大规模脑核磁图像数据,并进行预处理操作,然后,设计改进的蚁群算法,将脑核磁图像的灰度级作为路径上的节点,蚂蚁经过的灰度级节点作为分割的阈值组,将Kapur熵作为目标函数;最后,搭建Spark框架,将改进的蚁群算法封装在可并行计算的RDD集合中,进行并行处理,得到最佳阈值组,并根据阈值组进行脑核磁图像的阈值分割。本发明的有益效果为:能够有效提高对大规模脑核磁图像信息提取的效率和精度,对脑核磁数据计算机智能辅助处理具有较强的应用价值。

    用于婴幼儿脑病历图像分割的全卷积遗传神经网络方法

    公开(公告)号:CN112001887B

    公开(公告)日:2021-11-09

    申请号:CN202010697178.1

    申请日:2020-07-20

    申请人: 南通大学

    摘要: 本发明公开了一种用于婴幼儿脑病历图像分割的全卷积遗传神经网络方法,属于医学图像信息智能处理领域,首先输入婴幼儿脑病历图像数据,对图像预处理,并根据DMPGA‑FCN网络权值长度L对参数进行遗传编码初始化;然后将m个个体随机划分至遗传原生子种群Pop中并衍生孪生子种群Pop′,子种群在不相交区间确定各自交换概率pc和变异概率pm,使用遗传算子寻找最优初始权值fa;其次将fa作为前向传播计算参数,并在特征地址featuremap上做加权Q操作;最后将婴幼儿脑病历预测图像与标准分割图进行逐像素交叉熵损失计算从而反向更新权值,最终得到婴幼儿脑病历图像分割网络模型的最优权值。本方法能提高婴幼儿脑病历图像分割效率,对婴幼儿脑病的早期正确诊断和患儿脑病的康复具有重要意义。

    大规模不平衡糖尿病电子病历并行分类邻域证据Spark方法

    公开(公告)号:CN113012776A

    公开(公告)日:2021-06-22

    申请号:CN202110341531.7

    申请日:2021-03-30

    申请人: 南通大学

    摘要: 本发明提供了一种大规模不平衡糖尿病电子病历并行分类邻域证据Spark方法,在主节点上读取糖尿病数据,并按照4:1比例将糖尿病数据划分为训练集和测试集;在子节点上对糖尿病训练集通过Spark并行欠采样获得多个新的训练子集;在子节点上通过Spark并行病理特征约简器得到病理特征约简子集,并更新每个子节点上训练子集和测试子集的病理特征集,在子节点上,通过邻域证据Spark并行分类器获得测试子集的预测类别标签集合,在主节点上根据投票机制得到最终的预测类别标签。本发明的有益效果为:本发明去除大规模数据中冗余属性,提高了计算效率,充分地利用了样本之间的支持信息,提升了糖尿病数据分类的效率和精度。