用于脑肿瘤图像分割的深度证据FCM聚类方法

    公开(公告)号:CN117975069B

    公开(公告)日:2024-10-01

    申请号:CN202410270923.2

    申请日:2024-03-11

    申请人: 南通大学

    摘要: 本发明属于医学图像处理领域,提供了一种用于脑肿瘤图像分割的深度证据FCM聚类方法,解决了医学图像分割中不能很好地保留学习到的特征空间中数据生成分布的局部结构和边缘区域划分不清晰的技术问题。其技术方案为:包括以下步骤:S10、对脑肿瘤MRI图像进行预处理;S20、利用自编码器对输入脑肿瘤图像进行特征学习并实现降维;S30、运用三支策略分配出确定的和不确定的脑肿瘤图像分割区域;S40、运用粒舱和证据理论分配不确定的图像分割区域;S50、对深度聚类模型进行训练。本方案的有益效果为:可以有效的提取脑肿瘤图像特征、降低脑肿瘤图像分割的计算复杂性、改善聚类效果,有助于医生进行更准确的诊断和治疗规划。

    用于医学图像检索目标攻击的模糊Transformer哈希方法

    公开(公告)号:CN118093911A

    公开(公告)日:2024-05-28

    申请号:CN202410234959.5

    申请日:2024-03-01

    申请人: 南通大学

    摘要: 本发明提供了用于医学图像检索目标攻击的模糊Transformer哈希方法,解决了目前深度哈希模型在医学图像检索中鲁棒性差、易受对抗样本影响的技术问题。其技术方案为:建立医学图像数据库,构建模糊Transformer哈希模型,模型主要有四个部分:视觉Transformer哈希模型、原型网络、残差模糊生成器和判别器;计算各部分的损失函数以及采用交替学习算法优化;将测试集生成的原型码和对抗样本作为查询样本在数据库中检索,并使用目标平均精度t‑MAP评估模型的目标攻击性能。本发明的有益效果为:增强了在医学图像检索过程中模型的鲁棒性和抗干扰性,提高了医学图像检索的准确率。

    用于脑肿瘤图像分割的深度证据FCM聚类方法

    公开(公告)号:CN117975069A

    公开(公告)日:2024-05-03

    申请号:CN202410270923.2

    申请日:2024-03-11

    申请人: 南通大学

    摘要: 本发明属于医学图像处理领域,提供了一种用于脑肿瘤图像分割的深度证据FCM聚类方法,解决了医学图像分割中不能很好地保留学习到的特征空间中数据生成分布的局部结构和边缘区域划分不清晰的技术问题。其技术方案为:包括以下步骤:S10、对脑肿瘤MRI图像进行预处理;S20、利用自编码器对输入脑肿瘤图像进行特征学习并实现降维;S30、运用三支策略分配出确定的和不确定的脑肿瘤图像分割区域;S40、运用粒舱和证据理论分配不确定的图像分割区域;S50、对深度聚类模型进行训练。本方案的有益效果为:可以有效的提取脑肿瘤图像特征、降低脑肿瘤图像分割的计算复杂性、改善聚类效果,有助于医生进行更准确的诊断和治疗规划。

    面向精神分裂症的双通道模糊信息粒与特征选择方法

    公开(公告)号:CN117877711A

    公开(公告)日:2024-04-12

    申请号:CN202311577208.5

    申请日:2023-11-23

    申请人: 南通大学

    摘要: 本发明提供了一种面向精神分裂症的双通道模糊信息粒与特征选择方法,属于智慧医疗技术领域,解决了精神分裂症中存在过多冗余病理特征且特征间相关性难以全面表述的技术问题。其技术方案为:包括如下步骤:S10、读取精神分裂症数据集;S20、根据两种不同的粒度表示形成模糊相似关系;S30、刻画精神分裂症数据的特征重要度,对特征进行排序;S40、对不同的粒度表示形成的特征序列采用类内类间策略决定最终的特征序列。本发明的有益效果为:去除冗余病理特征,从稀疏和模糊凸半球两个粒度层面描述样本之间的模糊相关性,更精确地表示样本的紧密性,并提高检测效率,帮助医生有效分析精神分裂症的病变情况,具有较强的应用价值。

    一种用于精神分裂症病历图像特征选择的稀疏双向Spark方法

    公开(公告)号:CN116486067A

    公开(公告)日:2023-07-25

    申请号:CN202310386424.5

    申请日:2023-04-11

    申请人: 南通大学

    摘要: 本发明提供了一种用于精神分裂症病历图像特征选择的稀疏双向Spark方法,属于精神分裂症的生物标记物选择技术领域;解决了数据集中样本分布不一致的技术问题。其技术方案为:首先,在主节点Master上,读取大规模精神分裂症病历图像数据,对其进行预处理和划分,并将数据子集广播到相应的子节点上,在第i子节点Slaveri上,通过Spark并行化的稀疏约束模型刻画样本之间的联系,得到样本最优的K个邻居(K是邻居个数),然后,在粒化过程中引入双向互邻策略,构造基于稀疏双向的Spark粗糙集模型,在子节点Slaveri上,将启发式特征选择方法和动态优化策略结合,选取预测精神分裂症的重要脑区域。本发明的有益效果为:有助于精神分裂症的预测。

    基于惩罚机制的代价敏感序贯三支阴影膀胱炎分类方法

    公开(公告)号:CN115985489A

    公开(公告)日:2023-04-18

    申请号:CN202211484624.6

    申请日:2022-11-24

    申请人: 南通大学

    摘要: 本发明提供了基于惩罚机制的代价敏感序贯三支阴影膀胱炎分类方法,属于膀胱炎患者进行分类技术领域;其技术方案为:根据条件属性的重要性将其降序排序;其次顺序计算每个膀胱炎数据对象的隶属度,对膀胱炎数据对象进行阴影化处理,阴影域作为膀胱炎数据下一个粒度的论域;然后计算膀胱炎数据相邻两个粒度之间的两种精度差异,通过惩罚函数对膀胱炎数据的代价参数进行修改,从而确定新的阴影集阈值;如果膀胱炎数据最后一个粒度的阴影域不为空,则对其阴影集阈值进行加权求和得到新的阈值对阴影域进行分类。本发明的有益效果为:本发明分类精度好,为膀胱炎诊断提供决策支持,提高患者就医满意度。

    一种用于宫颈癌数据分类的粗糙图卷积方法

    公开(公告)号:CN113159156B

    公开(公告)日:2023-04-18

    申请号:CN202110405276.8

    申请日:2021-04-15

    申请人: 南通大学

    摘要: 本发明提供了一种用于宫颈癌数据分类的粗糙图卷积方法,要从宫颈癌数据中获得宫颈癌病变细胞信息的数据集合及其决策分类;计算宫颈癌数据中决策属性的依赖度,约简子集的属性重要度;按照约简子集的重要度排序选择可以得到宫颈癌数据中病理特征约简子集R;将经过粗糙集处理后的宫颈数据集转换成拓扑图的形式,作为神经网络的输入;利用神经网络采取一阶切比雪夫ChebNet的方法进行图卷积,用半监督方法进行节点分类,所得到的结果经过可视化后可求出宫颈癌数据中数据所属的类。本发明能够有效提高对宫颈癌数据进行分类的效率和精度,对宫颈癌数据计算机智能辅助分类具有较强的应用价值。

    一种粗糙合理粒度驱动的胎儿心电图异常检测方法

    公开(公告)号:CN112232253A

    公开(公告)日:2021-01-15

    申请号:CN202011154195.7

    申请日:2020-10-26

    申请人: 南通大学

    摘要: 本发明提供了一种粗糙合理粒度驱动的胎儿心电图异常检测方法,包括如下步骤:S10获得所有胎儿心电图样本的特征值及胎儿状态构造决策信息表;S20利用局部邻域决策粗糙集模型对胎儿心电图样本的粗糙隶属度进行计算;S30基于PSO优化算法的合理邻域选择;S40将步骤S30中所求最优邻域半径作为所述步骤S20中局部邻域决策粗糙集模型的邻域半径,更新近似集。本发明的一种粗糙合理粒度驱动的胎儿心电图异常检测方法,根据邻域信息识别异常样本,分别给出不同分布情况下样本的粗糙隶属度,为标签噪声样本提供一组伪类别标记;引入合理粒度准则,利用粒子群优化算法选择最优邻域半径,对根据伪类别标记修正后的信息表进行上下近似集的更新。

    一种用于精神分裂症病历图像特征选择的稀疏双向Spark方法

    公开(公告)号:CN116486067B

    公开(公告)日:2024-10-29

    申请号:CN202310386424.5

    申请日:2023-04-11

    申请人: 南通大学

    IPC分类号: G06F16/50 G06V10/25 G06V10/40

    摘要: 本发明提供了一种用于精神分裂症病历图像特征选择的稀疏双向Spark方法,属于精神分裂症的生物标记物选择技术领域;解决了数据集中样本分布不一致的技术问题。其技术方案为:首先,在主节点Master上,读取大规模精神分裂症病历图像数据,对其进行预处理和划分,并将数据子集广播到相应的子节点上,在第i子节点Slaveri上,通过Spark并行化的稀疏约束模型刻画样本之间的联系,得到样本最优的K个邻居(K是邻居个数),然后,在粒化过程中引入双向互邻策略,构造基于稀疏双向的Spark粗糙集模型,在子节点Slaveri上,将启发式特征选择方法和动态优化策略结合,选取预测精神分裂症的重要脑区域。本发明的有益效果为:有助于精神分裂症的预测。