-
公开(公告)号:CN113763409B
公开(公告)日:2023-05-02
申请号:CN202110995534.2
申请日:2021-08-27
申请人: 南通大学
摘要: 本发明提供了一种基于高斯滤波的高维脑核磁图像多阈值分割方法,属于智慧医疗技术领域。其技术方案为:首先,获取脑核磁图像数据F;其次,通过标准差为脑核磁图像的粗糙性度量的高斯滤波进行自适应平滑滤波预处理;再次,对预处理后的脑核磁图像进行灰度直方图统计,并根据灰度直方图的峰值设定脑部组织的灰质、白质、脑脊液和背景的三个初始分割阈值(t1,t2,t3);最后,将脑核磁图像中三个目标组织和背景的四类间方差σ2(t1,t2,t3)作为混合蛙跳算法的适应度函数寻找三个最优分割阈值并输出分割后的二值化图像。本发明的有益效果为:降低了噪声对脑核磁图像分割的影响,提高了对脑核磁图像中三个目标组织的分割精度,对脑核磁图像智能辅助分割和诊断具有较强的应用价值。
-
公开(公告)号:CN113763409A
公开(公告)日:2021-12-07
申请号:CN202110995534.2
申请日:2021-08-27
申请人: 南通大学
摘要: 本发明提供了一种基于高斯滤波的高维脑核磁图像多阈值分割方法,属于智慧医疗技术领域。其技术方案为:首先,获取脑核磁图像数据F;其次,通过标准差为脑核磁图像的粗糙性度量的高斯滤波进行自适应平滑滤波预处理;再次,对预处理后的脑核磁图像进行灰度直方图统计,并根据灰度直方图的峰值设定脑部组织的灰质、白质、脑脊液和背景的三个初始分割阈值(t1,t2,t3);最后,将脑核磁图像中三个目标组织和背景的四类间方差σ2(t1,t2,t3)作为混合蛙跳算法的适应度函数寻找三个最优分割阈值并输出分割后的二值化图像。本发明的有益效果为:降低了噪声对脑核磁图像分割的影响,提高了对脑核磁图像中三个目标组织的分割精度,对脑核磁图像智能辅助分割和诊断具有较强的应用价值。
-