-
公开(公告)号:CN108847285B
公开(公告)日:2021-05-28
申请号:CN201810436034.3
申请日:2018-05-09
Applicant: 吉林大学
Abstract: 本发明涉及一种基于机器学习的孕前期及孕中期唐氏综合征筛查方法,该方法包括如下步骤:选择孕妇中孕期唐氏筛查结果数据中的ns个字段作为训练特征;将Ns条样本加入数据集A;对数据集A内的样本进行预处理,使少数类集合与多数类集合中的样本数目达到均衡,获得合成数据集;将合成数据集中的样本进行处理获得胎儿是否患有唐氏综合征的预测模型,利用预测模型对测试样本进行预测得到预测结果。本发明避免了人为划分指标阈值的过程,减轻了人力资源,能够取得较高的准确率和较低的假阳性率。
-
公开(公告)号:CN108877949A
公开(公告)日:2018-11-23
申请号:CN201810592920.5
申请日:2018-06-11
Applicant: 吉林大学
Abstract: 本发明涉及一种基于孤立森林算法和投票机制的唐氏综合症筛查方法,该方法包括下述步骤:数据预处理:将多条样本加入数据集;划分数据集,得到A训练集和B训练集,进一步交叉划分A训练集,得到多个训练子集:训练得到多个孤立森林模型及其对应的异常度得分阈值;对B训练集中的样本投票得到每个样本的所得票数:获得预判决阈值以及B训练集中的每条样本的预判决结果;使用训练支持向量机SVM模型进行最终判决。本发明能够提高异常的检出率,降低误诊率。
-
公开(公告)号:CN108877949B
公开(公告)日:2021-04-27
申请号:CN201810592920.5
申请日:2018-06-11
Applicant: 吉林大学
Abstract: 本发明涉及一种基于孤立森林算法和投票机制的唐氏综合症筛查方法,该方法包括下述步骤:数据预处理:将多条样本加入数据集;划分数据集,得到A训练集和B训练集,进一步交叉划分A训练集,得到多个训练子集:训练得到多个孤立森林模型及其对应的异常度得分阈值;对B训练集中的样本投票得到每个样本的所得票数:获得预判决阈值以及B训练集中的每条样本的预判决结果;使用训练支持向量机SVM模型进行最终判决。本发明能够提高异常的检出率,降低误诊率。
-
公开(公告)号:CN108847285A
公开(公告)日:2018-11-20
申请号:CN201810436034.3
申请日:2018-05-09
Applicant: 吉林大学
Abstract: 本发明涉及一种基于机器学习的孕前期及孕中期唐氏综合征筛查方法,该方法包括如下步骤:选择孕妇中孕期唐氏筛查结果数据中的ns个字段作为训练特征;将Ns条样本加入数据集A;对数据集A内的样本进行预处理,使少数类集合与多数类集合中的样本数目达到均衡,获得合成数据集;将合成数据集中的样本进行处理获得胎儿是否患有唐氏综合征的预测模型,利用预测模型对测试样本进行预测得到预测结果。本发明避免了人为划分指标阈值的过程,减轻了人力资源,能够取得较高的准确率和较低的假阳性率。
-
-
-