-
公开(公告)号:CN116793206A
公开(公告)日:2023-09-22
申请号:CN202310760802.1
申请日:2023-06-26
申请人: 吉林大学 , 上海宇航系统工程研究所
IPC分类号: G01B7/16
摘要: 本发明公开了一种柔性应变传感器及其制备方法,器件包括:第一导电层、与所述第一导电层相贴合的第二导电层、两个电极以及包裹所述第一导电层和第二导电层的封装层;所述第一导电层包括:第一柔性基底和设置在所述第一柔性基底上的相互分离的第一导电块阵列;所述第二导电层包括:第二柔性基底和设置在所述第二柔性基底上的相互分离的第二导电块阵列;所述第一导电块阵列中的导电块与所述第二导电块阵列中的导电块交错连接,构成导电回路;所述两个电极分别设置在所述导电回路的两端。本发明提供的柔性应变传感器,由于传感器两层导电材料设置成非连续的导电块,导电块之间的距离可以随着应变而改变,有效提高了柔性传感器的可应变范围。
-
公开(公告)号:CN116907574A
公开(公告)日:2023-10-20
申请号:CN202310805935.6
申请日:2023-07-03
申请人: 吉林大学 , 上海宇航系统工程研究所
摘要: 本发明涉及一种仿蝎子栉器的双模态柔性传感器阵列及其制备方法,其中,仿蝎子栉器的双模态传感器阵列自上而下包括:仿栉器透气板,由柔性材料制成,包括具备通孔和凸包的透气阵列;气体敏感层,包括对应每一所述透气阵列区域设置的多个用于接触目标气体并产生相应电信号的片区;仿栉器多孔介电层,由柔性材料制成,包括处于用于感知和响应气体信号的第一微结构和第一信号传输通道,且所述仿栉器多孔介电层具备无规则多孔组织;基底,由柔性材料制成,包括用于感知和响应压力信号的第二微结构和第二信号传输通道。相较于现有的双模态传感器,本发明所提供的仿蝎子栉器的双模态柔性传感器阵列具有高灵敏度、线性度、信号串扰弱和高选择性等特点。
-
公开(公告)号:CN115128543B
公开(公告)日:2024-07-23
申请号:CN202210587535.8
申请日:2022-05-25
申请人: 吉林大学 , 吉林大学威海仿生研究院 , 苏州大学
IPC分类号: G01S5/18
摘要: 本发明涉及一种基于蝎子缝的仿生定位传感器、系统及仿真方法,所述仿生定位传感器用于光线小于等于15lux的环境或物体内部空间;所述仿生定位传感器包括:非尖角结构的基底和PVDF压电薄膜;所述基底上布置有蝎子缝结构和至少一段压电薄膜沟槽;所述压电薄膜沟槽包围所述蝎子缝结构中各蝎子缝的缝尖端区域;所述PVDF压电薄膜固定在所述压电薄膜沟槽中,并设有接地电极、电平检测端口,模拟电压信号输出端。所述系统包括一个以上的仿生定位传感器、数模转换组件、信号传输组件和处理组件。所述仿生定位传感器及系统能够在光线昏暗或物体内部的条件下提高传感精度、扩大传感范围、缩小感应误差,还降低了对硬件的要求,成本低。
-
公开(公告)号:CN115200694A
公开(公告)日:2022-10-18
申请号:CN202210689573.4
申请日:2022-06-16
申请人: 吉林大学 , 吉林大学威海仿生研究院
IPC分类号: G01H11/06
摘要: 本发明提出一种基于水黾类鼓结构仿生四足定位振动感知系统,包括振动信号采集装置和振动信号处理装置;振动信号采集装置包括部署于平面上的第一传感器、第二传感器、第三传感器和第四传感器,第一传感器、第二传感器、第三传感器和第四传感器依次沿预设圆周均匀分布,第一传感器、第二传感器、第三传感器和第四传感器均为仿水黾类鼓结构的传感器;第一传感器、第二传感器、第三传感器和第四传感器均与振动信号处理装置电连接。对振动信号的检测精度高、检测灵敏度高、感知范围广。此外,本发明提出了一种基于上述振动感知定位系统的振动感知定位方法。
-
公开(公告)号:CN115856348A
公开(公告)日:2023-03-28
申请号:CN202211619221.8
申请日:2022-12-14
申请人: 吉林大学 , 吉林大学威海仿生研究院
摘要: 本发明公开仿蚊子触角多级鞭毛结构的高精度流场传感器及测量方法,仿生流场传感器是由中轴刚性杆和两侧多级悬臂式传感器组成,悬臂式传感器由柔性底层、柔性上层以及压阻式柔性传感器组成。所述中轴刚性杆为多级悬臂式传感器提供固定与支撑;柔性底层由高弹性模量材料制成,主要感测周围流场中气流变化,并随气流摆动;柔性上层由低弹性模量材料制成,主要提升刚性前段对气流变化的敏感性;压阻式柔性传感器分布在由柔性底层和柔性上层组成的次级悬臂梁上,次级悬臂梁的摆动会引发两层压阻式柔性传感器发生形变,从而改变传感器电阻值,综合评估压阻式柔性传感器的电阻变化情况,可精确测定流场内气流的流向、流量、流速等信息。
-
公开(公告)号:CN115128543A
公开(公告)日:2022-09-30
申请号:CN202210587535.8
申请日:2022-05-25
申请人: 吉林大学 , 吉林大学威海仿生研究院 , 苏州大学
IPC分类号: G01S5/18
摘要: 本发明涉及一种基于蝎子缝的仿生定位传感器、系统及仿真方法,所述仿生定位传感器用于光线小于等于15lux的环境或物体内部空间;所述仿生定位传感器包括:非尖角结构的基底和PVDF压电薄膜;所述基底上布置有蝎子缝结构和至少一段压电薄膜沟槽;所述压电薄膜沟槽包围所述蝎子缝结构中各蝎子缝的缝尖端区域;所述PVDF压电薄膜固定在所述压电薄膜沟槽中,并设有接地电极、电平检测端口,模拟电压信号输出端。所述系统包括一个以上的仿生定位传感器、数模转换组件、信号传输组件和处理组件。所述仿生定位传感器及系统能够在光线昏暗或物体内部的条件下提高传感精度、扩大传感范围、缩小感应误差,还降低了对硬件的要求,成本低。
-
公开(公告)号:CN115165074A
公开(公告)日:2022-10-11
申请号:CN202210692726.0
申请日:2022-06-17
申请人: 吉林大学 , 吉林大学威海仿生研究院
摘要: 本发明涉及一种共振多频识别跨介质仿生悬臂梁传感器、制备方法及系统,其中,传感器包括:悬臂梁、多频感测层以及接线端;多频感测层设于悬臂梁的相对的第一侧面和第二侧面上;多频感测层上设有若干用于匹配不同振型的电极通道,每一电极通道均包括呈个阵列分布的若干电极;每一电极通道均与接线端电性连接,并将所采集的检测信号传输至接线端;其中,悬梁臂的一端为自由端,另一端为与接线端连接的固定端。本发明基于水黾足部尖端的感觉毛感知水波纹振动信号的感知机理设计该传感器,本发明通过基于预先设置的多种共振振型布置每一电极位置,使得本发明在跨介质振动感知等环境下能够较为高效精准的获取并识别多种振动频率信号。
-
公开(公告)号:CN116336871A
公开(公告)日:2023-06-27
申请号:CN202310551256.0
申请日:2023-05-16
申请人: 吉林大学
IPC分类号: F41H5/04
摘要: 本发明公开受鳞角腹足蜗牛外壳和铁定甲虫鞘翅启发的仿生防弹插板,包括:自上而下依次叠置的上板,中板和下板,上板的底部向下板延伸并扣住下板。上板、中板和下板之间以榫卯结构进行连接。上板和中板之间、中板和下板之间分别设有榫卯形的过渡层。仿生防弹插板仿照鳞角腹足蜗牛的外壳进行设计,上板是硬质金属刚板,能够衰减大部分的冲击能,其底部向内层延伸出托板并倒扣住下板,防止防弹插板层间滑落;上板与中板之间以仿照铁定甲虫鞘翅设计的第一榫卯结构进行连接,能够在减少甚至无需使用胶接的情况下防止层间剥离;中板为高性能纤维板材料,起到缓释能量减小震动的作用;中板与下板之间的第二榫卯结构的过渡层,能更加有效地防止层间剥离。
-
公开(公告)号:CN116183068A
公开(公告)日:2023-05-30
申请号:CN202211549202.2
申请日:2022-12-05
申请人: 吉林大学
摘要: 本发明公开一种具有可控裂纹的高性能仿生纸基传感器及其制备方法,包括:传感元件、所述传感元件设置为模拟蝎子缝感受器裂纹结构的传感元件,用于检测应变信号,传感元件的裂纹结构用于检测振动信号;封装层、所述封装层包裹所述传感元件而设置;隔离层、所述隔离层设置在所述封装层与传感元件之间,用于隔离所述封装层与传感元件并产生空腔,使传感器具备检测压力信号能力,同时在一定的应变范围内具有可恢复性。本发明的传感器其适用于多种恶劣环境(水下、潮湿、高温)下的信号检测,包括压力信号、应变信号以及振动信号,其灵敏性高、稳定性好、体积小、经济性好,并且易于加工。
-
公开(公告)号:CN114479279B
公开(公告)日:2022-11-01
申请号:CN202210199592.9
申请日:2022-03-02
申请人: 吉林大学
发明人: 张俊秋 , 辛青青 , 韩志武 , 侯涛 , 韩奇钢 , 李因武 , 牛士超 , 李博 , 穆正知 , 孙涛 , 陈豫 , 秦晓静 , 赵厚琦 , 刘莉莉 , 葛俊洋 , 李浩然 , 高骥琪 , 伊韶静
摘要: 本发明涉及一种仿树根结构智能复合材料及其制备方法,仿树根结构智能复合材料包括第一支撑组件、第二支撑组件、固定在支撑组件上的多个树根状压电纤维束以及填充在支撑组件之间,将压电纤维束包裹在内的固化填充材料。树根状压电纤维束包括主支和旋转绕置在主支上的多个分支,主支的两端以及多个分支固定在支撑组件上。主支以及分支包括丝状压电材料、导电材料以及包裹在外侧的纤维丝。本发明借鉴了树根和神经元的结构功能,将多个分支与主支纠缠在一起形成树根状的压电纤维束,使得复合材料具有较好的应力分散功能。并将纤维丝包裹在丝状压电材料的外侧,使纤维丝和压电材料相互协同,实现自动监测压力和损伤的功能。
-
-
-
-
-
-
-
-
-