一种基于非线性函数的高超声速飞行器跟踪控制方法

    公开(公告)号:CN108427289B

    公开(公告)日:2021-06-29

    申请号:CN201810393045.8

    申请日:2018-04-27

    IPC分类号: G05B13/04

    摘要: 一种基于非线性函数的高超声速飞行器跟踪控制方法,本发明涉及基于非线性函数的高超声速飞行器跟踪控制方法。本发明为了解决现有飞行器的控制模型复杂及鲁棒性差的问题。本发明包括:步骤一:将高超声速飞行器模型通过状态反馈控制器进行转化,得到转化后的高超声速飞行器模型;步骤二:根据步骤一得到的转化后的高超声速飞行器模型,设计自适应非线性鲁棒控制器u0。本发明给出了在输入输出线性化模型基础上,通过引入辅助误差变量,将其转为一般多变量二阶系统。针对系统干扰存在未知上界,通过引入了一个新的连续可微的非线性饱和函数,并结合自适应理论,设计了非线性鲁棒控制器。本发明用于飞行器领域。

    一种海上目标自动探测方法

    公开(公告)号:CN110532989A

    公开(公告)日:2019-12-03

    申请号:CN201910833101.X

    申请日:2019-09-04

    IPC分类号: G06K9/00 G06K9/34

    摘要: 一种海上目标自动探测方法,它涉及一种目标自动探测方法。本发明提供一种基于对无人飞行器机载光电系统的可见光范围的半色调图像流的时空分析,且不需要预设用于目标探测的硬编码参考图像的海上目标自动探测方法。探测方法:S1、获取无人飞行器机载光电系统的海上目标视频序列;S2、构建海洋场景的关键目标模型MO:S3、获取S1中视频序列的第一帧图像中可疑目标的帧目标矢量 S4、更新关键目标模型MO;S5、获取S1中视频序列的下一帧图像中可疑目标的帧目标矢量 S6、更新关键目标模型MO:S7、从模型的目标矢量中找到权值为Wmax的目标,确定为探测到的目标,Wmax是目标的最大允许权值。

    风扰环境下无人机着陆引导方法

    公开(公告)号:CN110487280B

    公开(公告)日:2022-07-01

    申请号:CN201910833094.3

    申请日:2019-09-04

    IPC分类号: G01C21/20 G05D1/08 G05D1/10

    摘要: 风扰环境下无人机着陆引导方法,解决了风扰环境下无人机着陆引导方法存在引导精度不高的问题,属于无人机着陆控制领域。本发明包括:S1、在控制约束条件和无风的条件下,求解将无人机从任意初始位置转移到最终位置的辅助最优控制问题,计算得到无人机的导向运动轨迹;并给出了具体控制约束条件;S2、求解在给定风的随机分量条件下的无人机运动轨迹与导向运动轨迹最大逼近问题,确定无人机控制律;所述风速的随机分量为具有给定统计特性的随机函数,0≤σW≤|σW|M,σW表示风速的随机分量均方根,|σW|M表示σW的最大允许值;S3、利用所述无人机控制律实现无人机着陆引导。应用于风扰环境下无人机(UAV)在小型移动平台上着陆。

    无人机在舰船上着陆的控制方法

    公开(公告)号:CN110377046A

    公开(公告)日:2019-10-25

    申请号:CN201910832313.6

    申请日:2019-09-04

    IPC分类号: G05D1/08 G05D1/10

    摘要: 针对现有无人机在小型舰船上着陆的控制方法求解复杂的问题,本发明提供一种有效、简单的带有终端约束的无人机在小型舰船上着陆的控制方法,属于无人机着陆控制领域。本发明包括:S1、确定在满足终端约束条件下将无惯性无人机引导至船载着陆装置的最优着陆引导轨迹;所述终端约束条件为无人机与船载着陆装置对接时刻的边界条件;S2、在最优着陆引导轨迹的基础上,再结合无人机惯性的条件,确定无人机的控制轨迹,确保无人机与船载着陆装置对接时满足所述终端约束条件;S3、根据所述控制轨迹实现无人机在舰船上的着陆控制。本发明应用于无人机(UAV)在小型舰船上着陆。

    一种基于终端滑模的高超声速飞行器鲁棒跟踪控制方法

    公开(公告)号:CN108490786A

    公开(公告)日:2018-09-04

    申请号:CN201810395163.2

    申请日:2018-04-27

    IPC分类号: G05B13/04

    摘要: 一种基于终端滑模的高超声速飞行器鲁棒跟踪控制方法,本发明涉及基于终端滑模的高超声速飞行器鲁棒跟踪控制方法。本发明为了解决现有飞行器的控制模型复杂、鲁棒性差以及没有考虑控制器输入受限的问题。本发明给出了高超声速飞行器输入输出线性化模型,通过引入误差辅助变量,将其转化为二阶系统模型。针对系统干扰存在未知上界和执行器无输入饱和的情形,基于快速非奇异终端滑模面,设计了自适应快速终端滑模控制器,保证了滑模面为实际限时间收敛的。引入双曲正切函数和构造辅助系统,设计了抗饱和的自适应快速终端滑模控制器,满足高超声速飞行器执行器物理约束的要求同时保证系统滑模面在有限时间内收敛的。本发明用于飞行器领域。

    一种基于非线性函数的高超声速飞行器跟踪控制方法

    公开(公告)号:CN108427289A

    公开(公告)日:2018-08-21

    申请号:CN201810393045.8

    申请日:2018-04-27

    IPC分类号: G05B13/04

    摘要: 一种基于非线性函数的高超声速飞行器跟踪控制方法,本发明涉及基于非线性函数的高超声速飞行器跟踪控制方法。本发明为了解决现有飞行器的控制模型复杂及鲁棒性差的问题。本发明包括:步骤一:将高超声速飞行器模型通过状态反馈控制器进行转化,得到转化后的高超声速飞行器模型;步骤二:根据步骤一得到的转化后的高超声速飞行器模型,设计自适应非线性鲁棒控制器u0。本发明给出了在输入输出线性化模型基础上,通过引入辅助误差变量,将其转为一般多变量二阶系统。针对系统干扰存在未知上界,通过引入了一个新的连续可微的非线性饱和函数,并结合自适应理论,设计了非线性鲁棒控制器。本发明用于飞行器领域。

    一种海上目标自动探测方法

    公开(公告)号:CN110532989B

    公开(公告)日:2022-10-14

    申请号:CN201910833101.X

    申请日:2019-09-04

    摘要: 一种海上目标自动探测方法,它涉及一种目标自动探测方法。本发明提供一种基于对无人飞行器机载光电系统的可见光范围的半色调图像流的时空分析,且不需要预设用于目标探测的硬编码参考图像的海上目标自动探测方法。探测方法:S1、获取无人飞行器机载光电系统的海上目标视频序列;S2、构建海洋场景的关键目标模型MO:S3、获取S1中视频序列的第一帧图像中可疑目标的帧目标矢量S4、更新关键目标模型MO;S5、获取S1中视频序列的下一帧图像中可疑目标的帧目标矢量S6、更新关键目标模型MO:S7、从模型的目标矢量中找到权值为Wmax的目标,确定为探测到的目标,Wmax是目标的最大允许权值。

    风扰环境下无人机着陆引导方法

    公开(公告)号:CN110487280A

    公开(公告)日:2019-11-22

    申请号:CN201910833094.3

    申请日:2019-09-04

    IPC分类号: G01C21/20 G05D1/08 G05D1/10

    摘要: 风扰环境下无人机着陆引导方法,解决了风扰环境下无人机着陆引导方法存在引导精度不高的问题,属于无人机着陆控制领域。本发明包括:S1、在控制约束条件和无风的条件下,求解将无人机从任意初始位置转移到最终位置的辅助最优控制问题,计算得到无人机的导向运动轨迹;并给出了具体控制约束条件;S2、求解在给定风的随机分量条件下的无人机运动轨迹与导向运动轨迹最大逼近问题,确定无人机控制律;所述风速的随机分量为具有给定统计特性的随机函数,0≤σW≤|σW|M,σW表示风速的随机分量均方根,|σW|M表示σW的最大允许值;S3、利用所述无人机控制律实现无人机着陆引导。应用于风扰环境下无人机(UAV)在小型移动平台上着陆。

    无人机在舰船上着陆的控制方法

    公开(公告)号:CN110377046B

    公开(公告)日:2022-03-11

    申请号:CN201910832313.6

    申请日:2019-09-04

    IPC分类号: G05D1/08 G05D1/10

    摘要: 针对现有无人机在小型舰船上着陆的控制方法求解复杂的问题,本发明提供一种有效、简单的带有终端约束的无人机在小型舰船上着陆的控制方法,属于无人机着陆控制领域。本发明包括:S1、确定在满足终端约束条件下将无惯性无人机引导至船载着陆装置的最优着陆引导轨迹;所述终端约束条件为无人机与船载着陆装置对接时刻的边界条件;S2、在最优着陆引导轨迹的基础上,再结合无人机惯性的条件,确定无人机的控制轨迹,确保无人机与船载着陆装置对接时满足所述终端约束条件;S3、根据所述控制轨迹实现无人机在舰船上的着陆控制。本发明应用于无人机(UAV)在小型舰船上着陆。