基于点目标的敏捷成像卫星直线扫描条带预生成方法和卫星三轴姿态快速确定方法

    公开(公告)号:CN103134492B

    公开(公告)日:2015-04-29

    申请号:CN201310041009.2

    申请日:2013-02-01

    Abstract: 基于点目标的敏捷成像卫星直线扫描条带预生成方法和卫星三轴姿态快速确定方法,涉及航天器成像任务规划领域。本发明为了解决现有技术中在卫星成像规划领域没有关于直线推扫条带生成方法,以及现有采用两轴姿态计算确定卫星姿态的方法中,由于忽略了卫星的偏航机动性能,导致无法在任务规划中考虑敏捷卫星所能实现的推扫成像模式,进而降低了任务规划性能的问题。本发明通过筛选点目标,将每个待观测目标点大地经纬度转化为平面直角坐标,优化计算,得到直线扫描条带,然后通过获得的直线扫描条带,确定待观测目标点对应的新目标点;计算每个新目标点对应的大地坐标,计算卫星三轴姿态的参数,确定卫星三轴姿态。本发明适用于卫星成像任务规划。

    批量MEMS陀螺信息融合方法

    公开(公告)号:CN103162678A

    公开(公告)日:2013-06-19

    申请号:CN201310076430.7

    申请日:2013-03-11

    Abstract: 批量MEMS陀螺信息融合方法,属于MEMS陀螺信息整合技术领域。本发明是为了解决采用现有针对单一的陀螺信息进行处理的方法对多传感器的信息进行融合,运算量大及输出结果精度低的问题。它将批量MEMS陀螺均分成N组陀螺阵列;采用初级融合模块对每组陀螺阵列中所有MEMS陀螺采集获取的数据进行基于支持度的初级融合,获得每组陀螺阵列的融合数据;再通过时间序列模型获得对应的状态空间方程;再进行多级序贯式滤波,获得第N级融合状态估计值,经提取获得批量MEMS陀螺k时刻融合后的角速度。本发明用于批量MEMS陀螺信息的融合。

    基于SGCMG和RW的航天器高精度快速姿态机动方法

    公开(公告)号:CN103092208A

    公开(公告)日:2013-05-08

    申请号:CN201310007615.2

    申请日:2013-01-09

    Abstract: 基于SGCMG和RW的航天器高精度快速姿态机动方法,涉及一种航天器高精度快速姿态机动方法。它是为了实现航天器高精度快速姿态机动。本发明提供的是一种利用控制力矩陀螺(CMG)和反作用飞轮(RW)作为联合执行机构来实现航天器高精度快速机动的方法。本发明将绕欧拉主轴的角速度划分为三段,加速段和减速段采用CMG来产生要求的控制力矩,匀速段以及减速段结束后采用RW产生的补偿力矩来保证角速度维持在恒定值附近,从而实现航天器高精度快速机动。该方法适用于配置有CMG和RW的航天器姿态机动的情况,能够使航天器在快速机动的同时保证高精度的姿态指向和稳定度。本发明适用于航天器的姿态控制。

    基于积分分离的递阶饱和PID控制器的控制方法

    公开(公告)号:CN103034121A

    公开(公告)日:2013-04-10

    申请号:CN201310014383.3

    申请日:2013-01-15

    Abstract: 基于积分分离的递阶饱和PID控制器的控制方法,涉及一种递阶饱和PID控制器的控制方法,解决加入积分项的递阶饱和PID控制器会造成PID运算的积分积累,致使算得的控制量远远超过执行机构最大输出能力对应的极限控制量,最终引起系统较大的超调,甚至引起系统的震荡的问题。根据实时在台四元数Q和目标四元数Qc,计算出偏差向量e;根据星体最大控制加速度ai、最大转动角速度|ωi|max和步骤一获得的偏差向量e计算角速度约束系数Li,同时根据偏差向量e确定积分分离系数矩阵β;结合角速度约束系数Li与积分分离系数矩阵β计算输出力矩uc;分别通过姿态动力学方程与姿态运动学方程求解星体的实际角速度ω与更新后的反馈实时姿态四元数Q。本发明可广泛应用于对航天器的控制系统。

    批量MEMS陀螺信息融合方法

    公开(公告)号:CN103162678B

    公开(公告)日:2015-05-13

    申请号:CN201310076430.7

    申请日:2013-03-11

    Abstract: 批量MEMS陀螺信息融合方法,属于MEMS陀螺信息整合技术领域。本发明是为了解决采用现有针对单一的陀螺信息进行处理的方法对多传感器的信息进行融合,运算量大及输出结果精度低的问题。它将批量MEMS陀螺均分成N组陀螺阵列;采用初级融合模块对每组陀螺阵列中所有MEMS陀螺采集获取的数据进行基于支持度的初级融合,获得每组陀螺阵列的融合数据;再通过时间序列模型获得对应的状态空间方程;再进行多级序贯式滤波,获得第N级融合状态估计值,经提取获得批量MEMS陀螺k时刻融合后的角速度。本发明用于批量MEMS陀螺信息的融合。

    基于SGCMG和RW的航天器高精度快速姿态机动方法

    公开(公告)号:CN103092208B

    公开(公告)日:2015-06-24

    申请号:CN201310007615.2

    申请日:2013-01-09

    Abstract: 基于SGCMG和RW的航天器高精度快速姿态机动方法,涉及一种航天器高精度快速姿态机动方法。它是为了实现航天器高精度快速姿态机动。本发明提供的是一种利用控制力矩陀螺(CMG)和反作用飞轮(RW)作为联合执行机构来实现航天器高精度快速机动的方法。本发明将绕欧拉主轴的角速度划分为三段,加速段和减速段采用CMG来产生要求的控制力矩,匀速段以及减速段结束后采用RW产生的补偿力矩来保证角速度维持在恒定值附近,从而实现航天器高精度快速机动。该方法适用于配置有CMG和RW的航天器姿态机动的情况,能够使航天器在快速机动的同时保证高精度的姿态指向和稳定度。本发明适用于航天器的姿态控制。

    基于积分分离的递阶饱和PID控制器的控制方法

    公开(公告)号:CN103034121B

    公开(公告)日:2015-05-13

    申请号:CN201310014383.3

    申请日:2013-01-15

    Abstract: 基于积分分离的递阶饱和PID控制器的控制方法,涉及一种递阶饱和PID控制器的控制方法,解决加入积分项的递阶饱和PID控制器会造成PID运算的积分积累,致使算得的控制量远远超过执行机构最大输出能力对应的极限控制量,最终引起系统较大的超调,甚至引起系统的震荡的问题。根据实时在台四元数Q和目标四元数Qc,计算出偏差向量e;根据星体最大控制加速度ai、最大转动角速度|ωi|max和步骤一获得的偏差向量e计算角速度约束系数Li,同时根据偏差向量e确定积分分离系数矩阵β;结合角速度约束系数Li与积分分离系数矩阵β计算输出力矩uc;分别通过姿态动力学方程与姿态运动学方程求解星体的实际角速度ω与更新后的反馈实时姿态四元数Q。本发明可广泛应用于对航天器的控制系统。

    基于点目标的敏捷成像卫星直线扫描条带预生成方法和卫星三轴姿态快速确定方法

    公开(公告)号:CN103134492A

    公开(公告)日:2013-06-05

    申请号:CN201310041009.2

    申请日:2013-02-01

    Abstract: 基于点目标的敏捷成像卫星直线扫描条带预生成方法和卫星三轴姿态快速确定方法,涉及航天器成像任务规划领域。本发明为了解决现有技术中在卫星成像规划领域没有关于直线推扫条带生成方法,以及现有采用两轴姿态计算确定卫星姿态的方法中,由于忽略了卫星的偏航机动性能,导致无法在任务规划中考虑敏捷卫星所能实现的推扫成像模式,进而降低了任务规划性能的问题。本发明通过筛选点目标,将每个待观测目标点大地经纬度转化为平面直角坐标,优化计算,得到直线扫描条带,然后通过获得的直线扫描条带,确定待观测目标点对应的新目标点;计算每个新目标点对应的大地坐标,计算卫星三轴姿态的参数,确定卫星三轴姿态。本发明适用于卫星成像任务规划。

Patent Agency Ranking